Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease.
L M Ryan, … , M P Lynch, D J McCarty
L M Ryan, … , M P Lynch, D J McCarty
Published May 1, 1986
Citation Information: J Clin Invest. 1986;77(5):1689-1693. https://doi.org/10.1172/JCI112487.
View: Text | PDF
Research Article

Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease.

  • Text
  • PDF
Abstract

In calcium pyrophosphate dihydrate (CPPD) crystal deposition disease, metabolic abnormalities favoring extracellular inorganic pyrophosphate (PPi) accumulation have been suspected. Elevations of intracellular PPi in cultured skin fibroblasts from a single French kindred with familial CPPD deposition (19) and elevated nucleoside triphosphate pyrophosphohydrolase activity (NTPPPH), which generates PPi in extracts of CPPD crystal-containing cartilages (14) favor this suspicion. To determine whether NTPPPH activity or PPi content of cells might be a disease marker expressed in extraarticular cells, human skin-derived fibroblasts were obtained from control donors and patients affected with the sporadic and familial varieties of CPPD (CPPD-S and CPPD-F) deposition. Intracellular PPi was elevated in both CPPD-S (P less than 0.05) and CPPD-F (P less than 0.01) fibroblasts compared with control fibroblasts. Ecto-NTPPPH activity was elevated in CPPD-S (P less than 0.01) but not CPPD-F. Intracellular PPi correlated with ecto-NTPPPH (P less than 0.01). Elevated PPi levels in skin fibroblasts may serve as a biochemical marker for patients with familial or sporadic CPPD crystal deposition disease; ecto-NTPPPH activity further separates the sporadic and familial disease types. Expression of these biochemical abnormalities in nonarticular cells implies a generalized metabolic abnormality.

Authors

L M Ryan, R L Wortmann, B Karas, M P Lynch, D J McCarty

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 105 0
PDF 47 30
Scanned page 194 1
Citation downloads 61 0
Totals 407 31
Total Views 438
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts