Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112456

Sodium and water balance in chronic congestive heart failure.

R J Cody, A B Covit, G L Schaer, J H Laragh, J E Sealey, and J Feldschuh

Find articles by Cody, R. in: PubMed | Google Scholar

Find articles by Covit, A. in: PubMed | Google Scholar

Find articles by Schaer, G. in: PubMed | Google Scholar

Find articles by Laragh, J. in: PubMed | Google Scholar

Find articles by Sealey, J. in: PubMed | Google Scholar

Find articles by Feldschuh, J. in: PubMed | Google Scholar

Published May 1, 1986 - More info

Published in Volume 77, Issue 5 on May 1, 1986
J Clin Invest. 1986;77(5):1441–1452. https://doi.org/10.1172/JCI112456.
© 1986 The American Society for Clinical Investigation
Published May 1, 1986 - Version history
View PDF
Abstract

As the characteristics of sodium and water balance in heart failure remain undefined, we evaluated the hemodynamic, metabolic, and hormonal effects of balanced sodium intake in 10 patients with chronic congestive heart failure. We discontinued diuretics to avoid their confounding influence, and all patients received 1 wk of 10 meq and 100 meq balanced sodium intake and controlled free water. Comparing sodium intake of 10 with 100 meq, the following observations were made. There was weight gain (2.0 kg) and increased sodium excretion (11 +/- 3 to 63 +/- 15 meq/24 h), unaccompanied by increase of blood volume. Both renin-angiotensin system and sympathetic nervous system activity were greater during the 10 meq diet, and suppressed with the 100 meq sodium diet. For both diets, plasma renin and urinary aldosterone excretion were correlated with urinary sodium excretion (r = -0.768, r = -0.726, respectively; P less than 0.005). Systemic hemodynamics were minimally changed with increased sodium intake. However, reversal of vasoconstriction by captopril during the 10 meq diet, and its ineffectiveness during the 100 meq diet, indicated a renin-dependent mechanism in the former, and a renin-independent mechanism in the latter diet. There were two subgroups of response to the 100 meq diet: one group (n = 5) achieved neutral balance, while the second (n = 5) avidly retained sodium and water. Renin-angiotensin system activity was significantly higher in the latter group, and the mechanism for differences in sodium excretion for the subgroups could not be identified by blood volume or hemodynamic parameters. Orthostatic hypotension during tilt was greater during the 10 meq sodium diet, and in all cases, related to ineffective hemodynamic and hormonal compensatory responses.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1441
page 1441
icon of scanned page 1442
page 1442
icon of scanned page 1443
page 1443
icon of scanned page 1444
page 1444
icon of scanned page 1445
page 1445
icon of scanned page 1446
page 1446
icon of scanned page 1447
page 1447
icon of scanned page 1448
page 1448
icon of scanned page 1449
page 1449
icon of scanned page 1450
page 1450
icon of scanned page 1451
page 1451
icon of scanned page 1452
page 1452
Version history
  • Version 1 (May 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts