Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Evidence that prostacyclin modulates the vascular actions of calcium in man.
J L Nadler, … , J Vrbanac, R Horton
J L Nadler, … , J Vrbanac, R Horton
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1278-1284. https://doi.org/10.1172/JCI112431.
View: Text | PDF
Research Article

Evidence that prostacyclin modulates the vascular actions of calcium in man.

  • Text
  • PDF
Abstract

Increases in extracellular calcium (Ca++) can alter vascular tone, and thus may result in increased blood pressure (Bp) and reduced renal blood flow (RBF). Ca++ can stimulate prostaglandin E2 (PGE2) and/or prostacyclin (PGI2) release in vitro, which may modulate Ca++ vascular effects. However, in man, the effect of Ca++ on PG release is not known. To study this, 14 volunteers received low-dose (2 mg/kg Ca++ gluconate) or high-dose (8 mg/kg) Ca++ infusions. The low-dose Ca++ infusion did not alter systemic or renal hemodynamics, but selectively stimulated PGI2, as reflected by the stable metabolite 6-keto-PGF1 alpha in urine (159 +/- 21-244 +/- 30 ng/g creatinine, P less than 0.02). The same Ca++ infusion given during cyclooxygenase blockade with indomethacin or ibuprofen was not associated with a rise in PGI2 and produced a rise in Bp and fall in RBF. However, sulindac, reported to be a weaker renal PG inhibitor, did not prevent the Ca++ -induced PGI2 stimulation (129 +/- 33-283 +/- 90, P less than 0.02), and RBF was maintained despite similar increases in Bp. The high-dose Ca++ infusion produced an increase in mean Bp without a change in cardiac output, and stimulated urinary 6-keto-PGF1 alpha to values greater than that produced by the 2-mg/kg Ca++ dose (330 +/- 45 vs. 244 +/- 30, P less than 0.05). In contrast, urinary PGE2 levels did not change. A Ca++ blocker, nifedipine, alone had no effect on Bp or urinary 6-keto-PGF1 alpha levels, but completely prevented the Ca++ -induced rise in Bp and 6-keto-PGF1 alpha excretion (158 +/- 30 vs. 182 +/- 38, P greater than 0.2). However, the rise in 6-keto-PGF1 alpha was not altered by the alpha 1 antagonist prazosin (159 +/- 21-258 +/- 23, P less than 0.02), suggesting that calcium entry and not alpha 1 receptor activation mediates Ca++ pressor and PGI2 stimulatory effects. These data indicate a new vascular regulatory system in which PGI2 modulates the systemic and renal vascular actions of calcium in man.

Authors

J L Nadler, M McKay, V Campese, J Vrbanac, R Horton

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts