Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Sn-protoporphyrin inhibition of fetal and neonatal brain heme oxygenase. Transplacental passage of the metalloporphyrin and prenatal suppression of hyperbilirubinemia in the newborn animal.
G S Drummond, A Kappas
G S Drummond, A Kappas
Published March 1, 1986
Citation Information: J Clin Invest. 1986;77(3):971-976. https://doi.org/10.1172/JCI112398.
View: Text | PDF
Research Article

Sn-protoporphyrin inhibition of fetal and neonatal brain heme oxygenase. Transplacental passage of the metalloporphyrin and prenatal suppression of hyperbilirubinemia in the newborn animal.

  • Text
  • PDF
Abstract

Sn(tin)-protoporphyrin, a potent competitive inhibitor of heme oxygenase, can suppress hyperbilirubinemia in animal neonates and significantly reduce plasma bilirubin levels in animals and man. To further explore the biological actions and metabolic disposition of Sn-protoporphyrin, we have examined its effect in the suckling neonate when administered to the mother either 24-48 h before or immediately after birth. Sn-protoporphyrin, when administered before birth, crossed the placental membranes, inhibited fetal heme oxygenase, and suppressed the transient hyperbilirubinemia that occurs in the neonate after birth in a dose-dependent manner. Tissue heme oxygenase activity in the neonate was also lowered in a dose-dependent manner. The blood-brain barrier of the neonate was permeable to Sn-protoporphyrin for a period of between 20-28 d of postnatal life. Sn-protoporphyrin, however, was not retained in brain, but left the brain space with a t1/2 of 1.7 d. In addition, Sn-protoporphyrin administered once at birth to neonates inhibited brain heme oxygenase in a dose-dependent manner. The results of this study demonstrate that Sn-protoporphyrin can cross the placental membranes, inhibit tissue heme oxygenase activity in the fetus, and can also, following such prenatal treatment, suppress the hyperbilirubinemia of the newborn animal.

Authors

G S Drummond, A Kappas

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts