In these experiments, we assessed the role of hepatocyte lysosomes in biliary excretion of iron. We loaded rats with iron by feeding 2% carbonyl iron and collected bile for 24 h via bile fistulae from iron-loaded and control rats. In additional rats, bile was collected before and after the administration of colchicine. Rats were then killed and their livers were homogenized and fractionated for biochemical analyses or processed for electron microscopy and x-ray microanalysis. Inclusion of 2% carbonyl iron in the diet caused a 45-fold increase (P less than 0.001) in hepatic iron concentration compared with controls (1,826 +/- 159 vs. 38 +/- 6.7 micrograms/g liver, mean +/- SE). Electron microscopy with quantitative morphometry and x-ray microanalysis showed that the excess iron was sequestered in an increased number of lysosomes concentrated in the pericanalicular region of the hepatocyte. Iron loading was also associated with a twofold increase in biliary iron excretion (4.06 +/- 0.3 vs. 1.75 +/- 0.1 micrograms/g liver/24 h; P less than 0.001). In contrast, the biliary outputs of three lysosomal enzymes were significantly lower (P less than 0.0005) in iron-loaded rats compared with controls (mean +/- SE) expressed as mU/24 h/g liver: N-acetyl-beta-glucosaminidase, 26.7 +/- 4.6 vs. 66.2 +/- 13.4; beta-glucuronidase, 10.1 +/- 1.3 vs. 53.2 +/- 17.9; beta-galactosidase, 8.9 +/- 1.0 vs. 15.4 +/- 2.3. In iron-loaded rats but not in controls, biliary iron excretion was coupled to the release into bile of each of the three lysosomal hydrolases as assessed by linear regression analysis (P less than 0.001). In contrast, no relationships were found between biliary iron excretion and the biliary outputs of a plasma membrane marker enzyme (alkaline phosphodiesterase I) or total protein. After administration of colchicine, there was a parallel increase in biliary excretion of iron and lysosomal enzymes in iron-loaded rats, but not controls. We interpret these data to indicate that, in the rat, biliary iron excretion from hepatocyte lysosomes is an important excretory route for excess hepatic iron.
G D LeSage, L J Kost, S S Barham, N F LaRusso
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 126 | 0 |
39 | 16 | |
Scanned page | 332 | 1 |
Citation downloads | 72 | 0 |
Totals | 569 | 17 |
Total Views | 586 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.