Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112301

Decreased leukotriene B4 synthesis in smokers' alveolar macrophages in vitro.

M Laviolette, R Coulombe, S Picard, P Braquet, and P Borgeat

Find articles by Laviolette, M. in: PubMed | Google Scholar

Find articles by Coulombe, R. in: PubMed | Google Scholar

Find articles by Picard, S. in: PubMed | Google Scholar

Find articles by Braquet, P. in: PubMed | Google Scholar

Find articles by Borgeat, P. in: PubMed | Google Scholar

Published January 1, 1986 - More info

Published in Volume 77, Issue 1 on January 1, 1986
J Clin Invest. 1986;77(1):54–60. https://doi.org/10.1172/JCI112301.
© 1986 The American Society for Clinical Investigation
Published January 1, 1986 - Version history
View PDF
Abstract

Recent studies have shown that alveolar macrophages (AM) are able to release leukotrienes (LTs). Since cigarette smoking inhibits the cyclooxygenase pathway of arachidonic acid metabolism in the AM, we evaluated the LT production by AM from smokers and nonsmokers. AM were obtained from 35 volunteers, 16 nonsmokers, and 19 smokers. The cells were incubated under various conditions including stimulation with 30 microM arachidonic acid, 2 microM ionophore A23187, or both. Each experiment was performed in parallel using cells from a smoker and a nonsmoker. Lipoxygenase products were analyzed by reverse-phase high performance liquid chromatography. After stimulation, nonsmokers' AM produced LTB4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In incubations of AM with arachidonic acid and ionophore, the amounts of products formed were: LTB4, 317 +/- 56 pmol/10(6) cells and 5-HETE, 1,079 +/- 254, mean +/- SEM. No metabolites were generated under control conditions (no stimulation). In all incubations performed, the peptido-LTs (LTC4, LTD4, and LTE4) were undetectable. In comparison with AM from nonsmokers, those from smokers showed a 80-90% reduction of 5-HETE and LTB4 synthesis (P less than 0.05 to P less than 0.001 according to stimulatory conditions). This defective lipoxygenase metabolite production in AM from smokers was observed over a wide range of stimuli concentrations and incubation times; AM from smokers also had lower levels of intracellular (esterified) 5-HETE than nonsmokers' AM. We also studied blood polymorphonuclear leukocytes (PMNL) and no difference in the synthesis of 5-lipoxygenase products in these cells was noticed between smokers and nonsmokers. These data show that cigarette smoking causes a profound inhibition of the 5-lipoxygenase pathway in AM but not in blood PMNL.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 54
page 54
icon of scanned page 55
page 55
icon of scanned page 56
page 56
icon of scanned page 57
page 57
icon of scanned page 58
page 58
icon of scanned page 59
page 59
icon of scanned page 60
page 60
Version history
  • Version 1 (January 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts