Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Potential of brown adipose tissue type II thyroxine 5'-deiodinase as a local and systemic source of triiodothyronine in rats.
J E Silva, P R Larsen
J E Silva, P R Larsen
Published December 1, 1985
Citation Information: J Clin Invest. 1985;76(6):2296-2305. https://doi.org/10.1172/JCI112239.
View: Text | PDF
Research Article

Potential of brown adipose tissue type II thyroxine 5'-deiodinase as a local and systemic source of triiodothyronine in rats.

  • Text
  • PDF
Abstract

Previous reports suggest that a type II iodothyronine 5'-deiodinase may become the main enzymatic pathway for extrathyroidal triiodothyronine (T3) generation when the enzyme levels are sufficiently elevated and/or liver and kidney type I 5'-deiodinase activity is depressed. The present studies assessed the potential of brown adipose tissue (BAT) type II 5'-deiodinase to generate T3 for the plasma pool. BAT 5'-deiodination (BAT 5'D) was stimulated by either short- (4 h) or long-term (7 wk) cold exposure (4 degrees C). Long-term cold exposure increased thyroxine (T4) secretion 40-60% and extrathyroidal T3 production three-fold. In cold-adapted rats treated with propylthiouracil (PTU), extrathyroidal T3 production was 10-fold higher than in PTU-treated rats maintained at room temperature. Cold did not stimulate liver or kidney 5'D, but the cold-adapted rats showed a six- to eightfold higher BAT 5'D content. PTU caused greater than 95% inhibition of liver and kidney 5'D, but did not affect BAT 5'D. Thyroidectomized rats maintained on 0.8 micrograms of T4/100 g of body weight (BW) per day were acutely exposed to 4 degrees C. In rats given 10 mg of PTU/100 g of BW, 4 h of cold exposure still caused a 12-fold increase in BAT 5'D, a 2.3-fold increase in plasma T3 production, and a 4.8-fold increment in the locally produced T3 in BAT itself. All these responses were abolished by pretreatment with the alpha 1-antiadrenergic drug prazosin. Regardless of the ambient temperature, liver 5'D activity was greater than 90% inhibited by PTU. These results indicate that BAT can be a major source of plasma T3 under suitable circumstances such as acute or chronic exposure to cold. Furthermore, BAT 5'D activity affects BAT T3 content itself, suggesting that thyroid hormone may have a previously unrecognized role in augmenting the thermogenic response of this tissue to sympathetic stimulation. Such interactions may be especially important during the early neonatal period in humans, a time of marked thermogenic stress.

Authors

J E Silva, P R Larsen

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 295 8
PDF 51 21
Scanned page 314 2
Citation downloads 47 0
Totals 707 31
Total Views 738
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts