Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA.
R M Bennett, … , G T Gabor, M M Merritt
R M Bennett, … , G T Gabor, M M Merritt
Published December 1, 1985
Citation Information: J Clin Invest. 1985;76(6):2182-2190. https://doi.org/10.1172/JCI112226.
View: Text | PDF
Research Article

DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA.

  • Text
  • PDF
Abstract

Previous studies have indicated that white blood cells possess DNA on their outer membranes. In this study we set out to determine whether exogenous DNA bound to cells in a fashion compatible with a ligand receptor union. Purified populations of white blood cells; neutrophils (polymorphonuclear leukocytes, PMN), adherent mononuclear cells (ADMC), rosetting lymphocytes (E+ cells), and nonrosetting lymphocytes (E- cells) were incubated with radiolabeled lambda phage DNA in increasing concentrations. Binding of [3H]DNA was a saturable process and was inhibited by excess cold DNA and prior trypsinization of the cells. Rate zonal density centrifugation of purified cell membrane preparations confirmed that DNA was binding to the outer cell surface. The dissociation constant for all four cell types was approximately 10(-9) M, and from 0.81 X 10(3) to 2.6 X 10(3) molecules of lambda phage DNA bound to each cell depending upon cell type. Binding was not competitively inhibited by RNA, polydeoxyadenylic acid-polydeoxythymidylic acid (poly [d(A).d(T)]), or mononucleotides. Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE)-separated proteins from PMN, ADMC, E+, and E- cells were electrophoretically blotted onto nitrocellulose sheets; a probe of biotin-labeled DNA indicated a single species of DNA-binding molecule migrating in a position consistent with a molecular weight of 30,000. Isotopic and immunofluorescent studies indicate that DNA is internalized and degraded to oligonucleotides; this process is inhibited by cycloheximide. These results support the notion that there is a common binding site for DNA on white blood cells, that the stoichiometry of the association is compatible with a ligand receptor relationship, and that this apparent receptor is responsible for the endocytosis and degradation of exogenous DNA.

Authors

R M Bennett, G T Gabor, M M Merritt

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts