Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Selective expression of phosphoribosylpyrophosphate synthetase superactivity in human lymphoblast lines.
M J Losman, … , M Kim, M A Becker
M J Losman, … , M Kim, M A Becker
Published October 1, 1985
Citation Information: J Clin Invest. 1985;76(4):1657-1664. https://doi.org/10.1172/JCI112151.
View: Text | PDF
Research Article

Selective expression of phosphoribosylpyrophosphate synthetase superactivity in human lymphoblast lines.

  • Text
  • PDF
Abstract

Phenotypic expression of 5-phosphoribosyl 1-pyrophosphate (PRPP) synthetase superactivity was examined in lymphoblast lines derived from six unrelated male patients. Fibroblasts from these individuals have increased rates of PRPP and purine nucleotide synthesis and express four classes of kinetic derangement underlying enzyme superactivity: increased maximal reaction velocity (catalytic defect); inhibitor resistance (regulatory defect); increased substrate affinity (substrate binding defect); and combined catalytic and regulatory defects. Lymphoblast lines from three patients with catalytic defects and from three normal individuals were indistinguishable with respect to enzyme activities, PRPP concentrations and generation, and rates of purine synthesis. Enzyme in lymphoblasts from a patient with combined defects also showed normal maximal reaction velocity but expressed purine nucleotide inhibitor resistance. A second regulatory defect and a substrate binding defect were also demonstrable in lymphoblasts and were identical to the enzyme defects in fibroblasts from the respective patients. Regulatory and substrate binding defects in lymphoblasts were accompanied by increased rates of PRPP and purine nucleotide synthesis. Among explanations for selective expression of enzyme superactivity, reduced concentrations of catalytically superactive enzymes seemed unlikely: immunoreactive PRPP synthetase was comparable in normal-derived and patient-derived cells. Activation of normal enzyme in transformed lymphocytes was also unlikely because absolute specific activities of lymphoblast PRPP synthetases corresponded to those of normal fibroblast and erythrocyte enzymes. Abnormal electrophoretic mobilities and thermal stabilities, identified in certain catalytically superactive fibroblast PRPP synthetases, were not found in the corresponding lymphoblast enzymes. Thus, lymphoblast PRPP synthetases from patients with catalytic superactivity appeared to differ structurally and functionally from their fibroblast counterparts.

Authors

M J Losman, D Rimon, M Kim, M A Becker

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 176 0
PDF 112 2
Scanned page 232 2
Citation downloads 53 0
Totals 573 4
Total Views 577
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts