Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history

Advertisement

Research Article Free access | 10.1172/JCI112148

Prevention of bedrest-induced physical deconditioning by daily dobutamine infusions. Implications for drug-induced physical conditioning.

M J Sullivan, P F Binkley, D V Unverferth, J H Ren, H Boudoulas, T M Bashore, A J Merola, and C V Leier

Find articles by Sullivan, M. in: JCI | PubMed | Google Scholar

Find articles by Binkley, P. in: JCI | PubMed | Google Scholar

Find articles by Unverferth, D. in: JCI | PubMed | Google Scholar

Find articles by Ren, J. in: JCI | PubMed | Google Scholar

Find articles by Boudoulas, H. in: JCI | PubMed | Google Scholar

Find articles by Bashore, T. in: JCI | PubMed | Google Scholar

Find articles by Merola, A. in: JCI | PubMed | Google Scholar

Find articles by Leier, C. in: JCI | PubMed | Google Scholar

First published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1632–1642. https://doi.org/10.1172/JCI112148.
© 1985 The American Society for Clinical Investigation
First published October 1, 1985 - Version history
Abstract

The effects of intermittent infusions of dobutamine were studied in young normal male subjects during a period of bedrest deconditioning to determine whether this synthetic catechol affects physical conditioning processes in humans. 24 volunteers were placed at bedrest and randomized to daily 2-h treatments of saline infusions (control), dobutamine infusions, or maintenance exercise (control). Exercise, hemodynamic, and metabolic studies were performed at base line and at the termination of the 3-wk treatment period. Maximal exercise (duration, oxygen consumption, and workload) fell for the saline group and remained unchanged for the dobutamine and exercise groups. Hemodynamics during exercise were maintained the same as pretreatment base line for the dobutamine and exercise groups, whereas stroke volume and cardiac output dropped and heart rate rose for the saline group. The metabolic profile showed an increased blood lactate response at rest and during submaximal exercise after 3 wk of bedrest for the saline group, and essentially no change for the exercise and the dobutamine groups. Extraction of oxygen across the exercising lower limb rose for the dobutamine group, as did the activity of the skeletal muscle oxidative enzymes, citrate synthetase, and succinate dehydrogenase. In contrast to the exercise control group, the saline and dobutamine groups developed orthostatic hypotension, tachycardia, and accentuation of the renin-aldosterone response over the 3-wk treatment period; for the saline group, this is best explained by the observed fall in blood volume and for the dobutamine group, by the blunting of vascular vasoconstrictive responses. During a period of bedrest deconditioning in humans, infusions of dobutamine maintain many of the physiologic expressions of physical conditioning.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1632
page 1632
icon of scanned page 1633
page 1633
icon of scanned page 1634
page 1634
icon of scanned page 1635
page 1635
icon of scanned page 1636
page 1636
icon of scanned page 1637
page 1637
icon of scanned page 1638
page 1638
icon of scanned page 1639
page 1639
icon of scanned page 1640
page 1640
icon of scanned page 1641
page 1641
icon of scanned page 1642
page 1642
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts