Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history

Advertisement

Research Article Free access | 10.1172/JCI112145

Interleukin 3 promotes the in vitro proliferation of murine pluripotent hematopoietic stem cells.

J L Spivak, R R Smith, and J N Ihle

Find articles by Spivak, J. in: JCI | PubMed | Google Scholar

Find articles by Smith, R. in: JCI | PubMed | Google Scholar

Find articles by Ihle, J. in: JCI | PubMed | Google Scholar

First published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1613–1621. https://doi.org/10.1172/JCI112145.
© 1985 The American Society for Clinical Investigation
First published October 1, 1985 - Version history
Abstract

Medium conditioned by activated T lymphocytes stimulates the in vitro proliferation of pluripotent hematopoietic stem cells (spleen colony-forming units [CFU-S]) but the factors involved have not been identified. Because the lymphokine interleukin 3 (IL-3) enhances in vitro colony formation by committed hematopoietic progenitor cells, we examined the effect of IL-3 on the in vitro proliferation of CFU-S using an 11-d spleen colony assay. When mouse marrow cells were placed in liquid culture, CFU-S content declined progressively and by 96 h only 13% of the CFU-S remained. By contrast, after 96 h in the presence of 20 U/ml of IL-3, the number of CFU-S were the same as that in the initial inoculum. Although the number of CFU-S eventually declined, they could still be recovered after 264 h of culture. In the absence of IL-3, the number of CFU-S synthesizing DNA was negligible; in its presence, greater than 20% of the CFU-S were in cycle. IL-3 stimulated CFU-S proliferation at a concentration of 0.2 U/ml. The dose-response curve was similar to that observed for other biologic effects of the lymphokine, and as little as 1 h of exposure to IL-3 enhanced the survival of CFU-S in vitro. Treatment of marrow cells with anti-Thy 1.2 antibody and complement before exposure to IL-3 did not inhibit spleen colony formation, but treatment of the cells with anti-Thy 1.2 antibody and complement after exposure to IL-3 reduced CFU-S recovery after 96 h of culture by 45%. The cell composition of day 11 spleen colonies formed by IL-3-treated marrow cells was similar to that of colonies formed by untreated marrow cells. Finally, day 11 CFU-S persisting in the marrow of mice treated with 5-fluorouracil required IL-3 for proliferation in vitro. Taken together, these data indicate that IL-3 promotes the proliferation of CFU-S in vitro, increases the number of CFU-S synthesizing DNA, but does not alter their commitment program, and the target cell population includes CFU-S with self-renewal and marrow-repopulating ability.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1613
page 1613
icon of scanned page 1614
page 1614
icon of scanned page 1615
page 1615
icon of scanned page 1616
page 1616
icon of scanned page 1617
page 1617
icon of scanned page 1618
page 1618
icon of scanned page 1619
page 1619
icon of scanned page 1620
page 1620
icon of scanned page 1621
page 1621
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts