Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112130

Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system.

J K Boyles, R E Pitas, E Wilson, R W Mahley, and J M Taylor

Find articles by Boyles, J. in: JCI | PubMed | Google Scholar

Find articles by Pitas, R. in: JCI | PubMed | Google Scholar

Find articles by Wilson, E. in: JCI | PubMed | Google Scholar

Find articles by Mahley, R. in: JCI | PubMed | Google Scholar

Find articles by Taylor, J. in: JCI | PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1501–1513. https://doi.org/10.1172/JCI112130.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

The plasma protein apolipoprotein (apo) E is an important determinant of lipid transport and metabolism in mammals. In the present study, immunocytochemistry has been used to identify apo E in specific cells of the central and peripheral nervous systems of the rat. Light microscopic examination revealed that all astrocytes, including specialized astrocytic cells (Bergmann glia of the cerebellum, tanycytes of the third ventricle, pituicytes of the neurohypophysis, and Müller cells of the retina), possessed significant concentrations of apo E. In all of the major subdivisions of the central nervous system, the perinuclear region of astrocytic cells, as well as their cell processes that end on basement membranes at either the pial surface or along blood vessels, were found to be rich in apo E. Extracellular apo E was present along many of these same surfaces. The impression that apo E is secreted by astrocytic cells was confirmed by electron microscopic immunocytochemical studies, which demonstrated the presence of apo E in the Golgi apparatus. Apo E was not present in neurons, oligodendroglia, microglia, ependymal cells, and choroidal cells. In the peripheral nervous system, apo E was present within the glia surrounding sensory and motor neurons; satellite cells of the dorsal root ganglia and superior cervical sympathetic ganglion as well as the enteric glia of the intestinal ganglia were reactive. Apo E was also present within the non-myelinating Schwann cells but not within the myelinating Schwann cells of peripheral nerves. These results suggest that apo E has an important, previously unsuspected role in the physiology of nervous tissue.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1501
page 1501
icon of scanned page 1502
page 1502
icon of scanned page 1503
page 1503
icon of scanned page 1504
page 1504
icon of scanned page 1505
page 1505
icon of scanned page 1506
page 1506
icon of scanned page 1507
page 1507
icon of scanned page 1508
page 1508
icon of scanned page 1509
page 1509
icon of scanned page 1510
page 1510
icon of scanned page 1511
page 1511
icon of scanned page 1512
page 1512
icon of scanned page 1513
page 1513
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts