Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Effect of prostacyclin on vascular capacity in the dog.
T G Fulghum, … , R M Zusman, W J Powell Jr
T G Fulghum, … , R M Zusman, W J Powell Jr
Published September 1, 1985
Citation Information: J Clin Invest. 1985;76(3):999-1006. https://doi.org/10.1172/JCI112101.
View: Text | PDF
Research Article

Effect of prostacyclin on vascular capacity in the dog.

  • Text
  • PDF
Abstract

Since the discovery of prostacyclin (PGI2) in 1976, there has been great interest in its vascular effects and potential clinical applications. High infusion rates of PGI2 markedly depress arterial blood pressure both in animal studies and in clinical trials. This fall in pressure may result entirely from a decrease in arterial resistance. However, it is possible that the administration of PGI2 may decrease ventricular filling due to an increase in vascular capacity. To investigate whether or not PGI2 affects vascular capacity, we infused PGI2 intraarterially at both 10 and 25 micrograms/min into 15 dogs on total cardiopulmonary bypass. These infusions were associated with a 25 +/- 3 mmHg decrease in arterial pressure and an increase in vascular capacity of 155 +/- 29 ml (SE, P less than 0.005). This increase in capacity was greater (P less than 0.02) than the increase of 23 +/- 42 ml resulting from infusions of nitroglycerin into eight dogs at 2 mg/min, which produced a decrease in arterial pressure of 23 +/- 4 mmHg, which was the maximal effect that could be achieved. Neither bilateral cervical vagotomy nor beta adrenergic blockade with propranolol significantly diminished the increase in vascular capacity associated with infusions of PGI2. The results from studies in four eviscerated dogs indicated that PGI2 acts on both splanchnic and extrasplanchnic capacity vasculature. To compare the direct effects of PGI2 with those of nitroglycerin and nitroprusside on venous tone, we used an isolated canine spleen preparation. Infusions of PGI2 (100 mcg/min) increased spleen weight in this preparation by 9.0 +/- 2.4% (n = 10, P less than 0.001); this increase was significantly greater than increases of 3.6 +/- 2.2% (P less than 0.001) and 3.5 +/- 2.3% (P less than 0.001) caused by high dose infusions of nitroglycerin (1 mg/min) and nitroprusside (400 micrograms/min), respectively. Thus, PGI2 substantially increases vascular capacity by a mechanism that appears to involve a direct action on vascular smooth muscle. Furthermore, these results suggest that PGI2 might be useful in clinical conditions in which an increase in vascular capacity is indicated.

Authors

T G Fulghum, J P DiMarco, E W Supple, I Nash, J Gendlerman, D F Eton, J B Newell, R M Zusman, W J Powell Jr

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts