Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity.
S G Emerson, … , S C Clark, D G Nathan
S G Emerson, … , S C Clark, D G Nathan
Published September 1, 1985
Citation Information: J Clin Invest. 1985;76(3):1286-1290. https://doi.org/10.1172/JCI112087.
View: Text | PDF
Research Article

Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity.

  • Text
  • PDF
Abstract

To facilitate the direct study of progenitor cell biology, we have developed a simple and efficient procedure based upon negative selection by panning to purify large numbers of committed erythroid and myeloid progenitors from human fetal liver. The nonadherent, panned cells constitute a highly enriched population of progenitor cells, containing 30.4 +/- 13.1% erythrocyte burst forming units (BFU-E), 5.5 +/- 1.9% granulocyte-macrophage colony forming units (CFU-GM), and 1.4 +/- 0.7% granulocyte-erythroid-macrophage-megakaryocyte colony forming units (CFU-GEMM) as assayed in methylcellulose cultures. These cells are morphologically immature blasts with prominent Golgi. This preparative method recovers 60-100% of the committed progenitors detectable in unfractionated fetal liver and yields 2-30 X 10(6) progenitors from each fetal liver sample, and thus provides sufficient numbers of enriched progenitors to allow direct biochemical and immunologic manipulation. Using this technique, a purified recombinant protein previously thought to have only granulocyte-macrophage colony stimulating activity (GM-CSA) is shown to have both burst promoting activity and multipotential colony stimulating activity. Progenitor purification by panning thus appears to be a simple, efficient method that should facilitate the direct study of committed hematopoietic progenitors and their differentiation.

Authors

S G Emerson, C A Sieff, E A Wang, G G Wong, S C Clark, D G Nathan

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts