Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cationization of catalase, peroxidase, and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice.
J Schalkwijk, W B van den Berg, L B van de Putte, L A Joosten, L van den Bersselaar
J Schalkwijk, W B van den Berg, L B van de Putte, L A Joosten, L van den Bersselaar
View: Text | PDF
Research Article

Cationization of catalase, peroxidase, and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice.

  • Text
  • PDF
Abstract

Several enzymes and other proteins were made cationic either by coupling to polylysine or by shielding of anionic sites. These cationic proteins, all having an isoelectric point greater than 8.5 exhibited excellent retention in articular structures when injected in mouse knee joints. Autoradiography and histochemistry showed that cationic forms of catalase, superoxide dismutase, and horseradish peroxidase were firmly retained by synovial and cartilaginous tissues. The half-life of these enzymes in the joint is thus significantly extended compared with native enzymes. The native enzymes and their cationic derivatives were tested for antiinflammatory properties in mice, using antigen-induced arthritis and zymosan-induced arthritis. It was found that injection of cationic catalase or peroxidase induced a marked suppression of some parameters of the inflammatory response in both types of arthritis, as measured by 99m technetium pertechnetate uptake and leakage of 125I-labeled albumin. Native catalase and peroxidase were less, or not at all effective. Cationic superoxide dismutase or cationic nonenzyme proteins did not suppress inflammation. The observed suppression of two different types of inflammation (an immune and a nonimmune arthritis) by catalase and peroxidase suggests that elimination of peroxides contributes to the suppression of an inflammatory response. We would hypothesize that cationic enzymes offer the possibility for investigating the mechanisms of inflammation and, in addition, might be interesting from a therapeutical point of view.

Authors

J Schalkwijk, W B van den Berg, L B van de Putte, L A Joosten, L van den Bersselaar

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 185 3
PDF 67 4
Figure 0 4
Scanned page 250 4
Citation downloads 73 0
Totals 575 15
Total Views 590
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts