Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111900

Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol.

R M Harrell, K W Lyles, J M Harrelson, N E Friedman, and M K Drezner

Find articles by Harrell, R. in: PubMed | Google Scholar

Find articles by Lyles, K. in: PubMed | Google Scholar

Find articles by Harrelson, J. in: PubMed | Google Scholar

Find articles by Friedman, N. in: PubMed | Google Scholar

Find articles by Drezner, M. in: PubMed | Google Scholar

Published June 1, 1985 - More info

Published in Volume 75, Issue 6 on June 1, 1985
J Clin Invest. 1985;75(6):1858–1868. https://doi.org/10.1172/JCI111900.
© 1985 The American Society for Clinical Investigation
Published June 1, 1985 - Version history
View PDF
Abstract

Although conventional therapy (pharmacologic doses of vitamin D and phosphorus supplementation) is usually successful in healing the rachitic bone lesion in patients with X-linked hypophosphatemic rickets, it does not heal the coexistent osteomalacia. Because serum 1,25-dihydroxyvitamin D levels are inappropriately low in these patients and high calcitriol concentrations may be required to heal the osteomalacia, we chose to treat five affected subjects with high doses of calcitriol (68.2 +/- 10.0 ng/kg total body weight/d) and supplemental phosphorus (1-2 g/d) performing metabolic studies and bone biopsies before and after 5-8 mo of this therapy in each individual. Of these five patients, three (aged 13, 13, and 19 yr) were receiving conventional treatment at the inception of the study and therefore showed base-line serum phosphorus concentrations within the normal range. The remaining two untreated patients (aged 2 and 37 yr) displayed characteristic hypophosphatemia before calcitriol therapy. All five patients demonstrated serum calcitriol levels in the low normal range (22.5 +/- 3.2 pg/ml), impaired renal phosphorus conservation (tubular maximum for the reabsorption of phosphate per deciliter of glomerular filtrate, 2.13 +/- 0.20 mg/dl), and osteomalacia on bone biopsy (relative osteoid volume, 14.4 +/- 1.7%; mean osteoid seam width, 27.7 +/- 3.7 micron; mineral apposition rate, 0.46 +/- 0.12 micron/d). On high doses of calcitriol, serum 1,25-dihydroxyvitamin D levels rose into the supraphysiologic range (74.1 +/- 3.8 pg/ml) with an associated increment in the serum phosphorus concentration (2.82 +/- 0.19 to 3.78 +/- 0.32 mg/dl) and improvement of the renal tubular maximum for phosphate reabsorption (3.17 +/- 0.22 mg/dl). The serum calcium rose in each patient while the immunoactive parathyroid hormone concentration measured by three different assays remained within the normal range. Most importantly, repeat bone biopsies showed that high doses of calcitriol and phosphorus supplements had reversed the mineralization defect in all patients (mineral apposition rate, 0.88 +/- 0.04 micron/d) and consequently reduced parameters of bone osteoid content to normal (relative osteoid volume, 4.1 +/- 0.7%; mean osteoid seam width, 11.0 +/- 1.0 micron). Complications (hypercalcemia and hypercalciuria) ensued in four of these five patients within 1-17 mo of documented bone healing, necessitating reduction of calcitriol doses to a mean of 1.6 +/- 0.2 micrograms/d (28 +/- 4 ng/kg ideal body weight per day). At follow-up bone biopsy, these four subjects continued to manifest normal bone mineralization dynamics (mineral apposition rate, 0.88 +/-0.10 micrometer/d) on reduced doses of 1.25-dihydroxyvitamin D with phosphorus supplements (2 g/d) for a mean of 21.3 +/- 1.3 mo after bone healing was first documented. Static histomorphometric parameters also remained normal (relative osteoid volume, 1.5 +/- 0.4%; mean osteoid seam width, 13.5 +/- 0.8 micrometer). These data indicate that administration of supraphysiologic amounts of calcitriol, in conjunction with oral phosphorus, results in complete healing of vitamin D resistant osteomalacia in patients with X-linked hypophosphatemic rickets. Although complications predictably require calcitriol dose reductions once healing is achieved, continued bone healing can be maintained for up to 1 yr with lower doses of 1,25-dihydroxyvitamin D and continued phosphorus supplementation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1858
page 1858
icon of scanned page 1859
page 1859
icon of scanned page 1860
page 1860
icon of scanned page 1861
page 1861
icon of scanned page 1862
page 1862
icon of scanned page 1863
page 1863
icon of scanned page 1864
page 1864
icon of scanned page 1865
page 1865
icon of scanned page 1866
page 1866
icon of scanned page 1867
page 1867
icon of scanned page 1868
page 1868
Version history
  • Version 1 (June 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts