Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111871

Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules.

G J Schwartz and Q Al-Awqati

Find articles by Schwartz, G. in: PubMed | Google Scholar

Find articles by Al-Awqati, Q. in: PubMed | Google Scholar

Published May 1, 1985 - More info

Published in Volume 75, Issue 5 on May 1, 1985
J Clin Invest. 1985;75(5):1638–1644. https://doi.org/10.1172/JCI111871.
© 1985 The American Society for Clinical Investigation
Published May 1, 1985 - Version history
View PDF
Abstract

In the turtle bladder it has recently been shown that CO2 stimulates H+ secretion, at least in part, by causing fusion of vesicles enriched in H+ pumps with the luminal plasma membrane. To test for the presence of this mechanism in the kidney we perfused collecting ducts and proximal straight tubules on the stage of an inverted epifluorescence microscope with fluorescein isothiocyanate dextran (70,000 mol wt) in CO2-free medium. After washout we noted punctate fluorescence in endocytic vesicles in some collecting ducts and in all proximal straight tubule cells. More cells took up fluorescent dextran in outer medullary than in cortical collecting ducts. Using the pH dependence of the excitation spectrum of fluorescein we found the pH of the vesicles to be acid (approximately pH 6). Addition of proton ionophores increased vesicular pH by 0.6 +/- 0.1 U, suggesting that the acidity of the vesicles was caused by H+ pumps. CO2 added to the medium (25 mmHg, pH 7.6 at 37 degrees C) reduced fluorescence intensity by 24 +/- 5% in cortical collecting ducts, 27 +/- 5% in medullary collecting ducts, and 25 +/- 5% in proximal straight tubules. Since this effect was prevented by the prior addition of colchicine to the bath, we believe that CO2 caused a decrease in cytoplasmic fluorescence by stimulating exocytotic fusion of the vesicles and thereby secretion of fluorescent dextran. This exocytotic fusion also occurred when tubules that were loaded with fluorescent dextran at a pCO2 of 37 mmHg were exposed isohydrically to a pCO2 of 114 mmHg; the mean decrease was 53 +/- 4%. We conclude that some cells in the collecting ducts and all cells in the proximal straight tubule incorporate fluorescent dextran into the apical cytoplasmic vesicles and acidify them with H+ pumps. CO2 causes fusion of these vesicles with the luminal membrane, but whether CO2 stimulates H+ secretion by increasing the number of functioning H+ pumps remains to be determined.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1638
page 1638
icon of scanned page 1639
page 1639
icon of scanned page 1640
page 1640
icon of scanned page 1641
page 1641
icon of scanned page 1642
page 1642
icon of scanned page 1643
page 1643
icon of scanned page 1644
page 1644
Version history
  • Version 1 (May 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts