Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111853

Suppression of normal human erythropoiesis by gamma interferon in vitro. Role of monocytes and T lymphocytes.

S W Mamus, S Beck-Schroeder, and E D Zanjani

Find articles by Mamus, S. in: PubMed | Google Scholar

Find articles by Beck-Schroeder, S. in: PubMed | Google Scholar

Find articles by Zanjani, E. in: PubMed | Google Scholar

Published May 1, 1985 - More info

Published in Volume 75, Issue 5 on May 1, 1985
J Clin Invest. 1985;75(5):1496–1503. https://doi.org/10.1172/JCI111853.
© 1985 The American Society for Clinical Investigation
Published May 1, 1985 - Version history
View PDF
Abstract

Interferons (IFN) have been shown to suppress the proliferation of human erythroid progenitors (erythroid burst-forming units [BFU-E] and colony-forming units [CFU-E]) in vitro. To examine the mechanism(s) underlying this inhibitory activity, the effect of different doses (50-10,000 U) of a highly purified preparation of recombinant DNA produced human gamma-IFN on erythroid colony formation by normal human bone marrow BFU-E and CFU-E in the presence and absence of monocytes and/or T lymphocytes was studied. The addition of gamma-IFN to whole marrow caused suppression of BFU-E (6-65%) and CFU-E (31-79%) in a dose-dependent fashion. This inhibition occurred both with the direct addition of gamma-IFN to the culture plates as well as by the preincubation of marrow cells with gamma-IFN followed by the washing of the cells; at the highest concentration of gamma-IFN (10,000 U), near-maximal inhibition of colony formation occurred with as little as 15 min of preexposure (BFU-E, 50%; CFU-E, 81%). Removal of monocytes and/or T lymphocytes before the addition of gamma-IFN significantly reduced the inhibitory effects of this lymphokine (BFU-E, -1 to 38%; CFU-E, -8 to 67%). Co-culture of purified autologous monocytes or T cells preexposed to gamma-IFN with monocyte and T cell-depleted marrow cells resulted in highly significant inhibition of erythroid colony formation even when these treated cells comprised less than 1% of the total nucleated cell populations in culture. The inhibitory action of gamma-IFN was not prevented or reversed by erythropoietin. These results demonstrate that the inhibitory effects of gamma-IFN on erythropoiesis are mediated to a significant degree through accessory cell populations, and suggest that gamma-IFN may represent a useful tool in the study of the role of immunocompetent cells in the regulation of erythropoiesis in vitro.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1496
page 1496
icon of scanned page 1497
page 1497
icon of scanned page 1498
page 1498
icon of scanned page 1499
page 1499
icon of scanned page 1500
page 1500
icon of scanned page 1501
page 1501
icon of scanned page 1502
page 1502
icon of scanned page 1503
page 1503
Version history
  • Version 1 (May 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts