Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111850

Pancreatic enzyme response to a liquid meal and to hormonal stimulation. Correlation with plasma secretin and cholecystokinin levels.

C Beglinger, M Fried, I Whitehouse, J B Jansen, C B Lamers, and K Gyr

Find articles by Beglinger, C. in: JCI | PubMed | Google Scholar

Find articles by Fried, M. in: JCI | PubMed | Google Scholar

Find articles by Whitehouse, I. in: JCI | PubMed | Google Scholar

Find articles by Jansen, J. in: JCI | PubMed | Google Scholar

Find articles by Lamers, C. in: JCI | PubMed | Google Scholar

Find articles by Gyr, K. in: JCI | PubMed | Google Scholar

Published May 1, 1985 - More info

Published in Volume 75, Issue 5 on May 1, 1985
J Clin Invest. 1985;75(5):1471–1476. https://doi.org/10.1172/JCI111850.
© 1985 The American Society for Clinical Investigation
Published May 1, 1985 - Version history
View PDF
Abstract

Pancreatic trypsin output and plasma secretin and cholecystokinin (CCK) levels were measured in five healthy volunteers to investigate the mechanisms involved in regulating postprandial pancreatic secretion. The pancreas was stimulated by a liquid test meal or by either intravenous secretin (1-82 pmol/kg-1 per h-1) or caerulein, a CCK analogue (2.3-37 pmol/kg-1 per h-1), or by a combination of secretin and caerulein. Pancreatic secretion was assessed by a marker perfusion technique (polyethylene glycol [PEG 4000]), plasma secretin, and CCK by specific radioimmunoassays. Increasing doses of secretin produced increasing bicarbonate output (P less than 0.01), whereas trypsin was not stimulated over basal. Graded caerulein produced a stepwise increase in trypsin and bicarbonate output (P less than 0.01). Potentiation occurred for bicarbonate secretion between secretin and caerulein, but not for trypsin output. Postprandial trypsin secretion averaged 29.1 IU/min-1 over 150 min (equal to 55% of maximal response to caerulein). The peak trypsin response amounted to 90% of maximal caerulein. Significant increases of plasma secretion (P less than 0.05) and CCK (P less than 0.01) were observed after the meal. Comparison of enzyme and CCK responses to the testmeal or to exogenous caerulein suggested that the amount of CCK released after the meal could account for the postprandial trypsin secretion. We conclude that (a) the postprandial enzyme response in man is submaximal in comparison to maximal exogenous hormone stimulation; (b) CCK is a major stimulatory mechanism of postprandial trypsin secretion, whereas secretin is not involved; and (c) Potentiation of enzyme secretion is not a regulatory mechanism of the postprandial secretory response.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1471
page 1471
icon of scanned page 1472
page 1472
icon of scanned page 1473
page 1473
icon of scanned page 1474
page 1474
icon of scanned page 1475
page 1475
icon of scanned page 1476
page 1476
Version history
  • Version 1 (May 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts