Clearance experiments were carried out in pair-fed rats to examine the long-term effects of adrenalectomy and selective adrenal corticosteroid replacement in physiological amounts on renal potassium transport. To this end, clearance studies were conducted in rats that were sham operated, or adrenalectomized (ADX). ADX animals were given either vehicle, aldosterone (0.5 microgram/100 g body wt per day), dexamethasone (1.2 micrograms/100 g body wt per day), or aldosterone and dexamethasone, by osmotic minipump for 7-9 d whereupon clearance experiments were conducted. After chronic hormone treatment, during basal conditions when only Ringers solution was infused, all groups excreted similar amounts of potassium. However, in all ADX animals without mineralocorticoid replacement, the maintenance of urinary potassium excretion at control levels was associated with hyperkalemia, increased urine flow, and natriuresis; all are factors known to stimulate urinary potassium excretion. During acute potassium infusion, the increase in urinary potassium excretion was less in ADX rats than in controls. This functional deficiency in potassium excretion was partially corrected by dexamethasone and was uniformly associated with a significant increase in urine flow. Aldosterone replacement or aldosterone and dexamethasone given together chronically, sharply increased potassium excretion but did not restore excretion to control levels. Only acute aldosterone infusion (0.2 microgram/100 g body wt bolus plus 0.2 microgram/100 g body wt per hour), superimposed upon chronic aldosterone and dexamethasone treatment, fully restored potassium excretion to control levels. This aldosterone induced enhancement of potassium excretion, both chronic and acute, was not associated with hyperkalemia, and increased urine flow or natriuresis. Thus, physiological levels of both classes of adrenal corticosteroids stimulate renal potassium excretion albeit by different mechanisms. Mineralocorticoids stimulate tubular potassium excretion directly, whereas glucocorticoids augment excretion indirectly by increasing fluid and sodium delivery along the distal nephron.
B Stanton, G Giebisch, G Klein-Robbenhaar, J Wade, R A DeFronzo
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 151 | 7 |
50 | 8 | |
Scanned page | 394 | 0 |
Citation downloads | 66 | 0 |
Totals | 661 | 15 |
Total Views | 676 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.