Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interaction of asialo von Willebrand factor with glycoprotein Ib induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation.
L De Marco, … , S Russell, Z M Ruggeri
L De Marco, … , S Russell, Z M Ruggeri
Published April 1, 1985
Citation Information: J Clin Invest. 1985;75(4):1198-1203. https://doi.org/10.1172/JCI111816.
View: Text | PDF
Research Article

Interaction of asialo von Willebrand factor with glycoprotein Ib induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation.

  • Text
  • PDF
Abstract

von Willebrand factor (vWF) is necessary for the initial attachment of platelets to exposed subendothelium, particularly under flow conditions like those prevailing in the microcirculation. Little is known about its possible participation in subsequent events leading to formation of platelet thrombi at sites of vascular injury. We addressed this question by studying the mechanisms by which desialylated vWF induces platelet aggregation in the absence of any other stimulus. Asialo vWF, unlike the native molecule, does not require ristocetin to interact with platelets. Agglutination induced by ristocetin is largely independent of active platelet metabolism and only partially reflects physiological events. We have shown here that binding of asialo vWF to platelets was accompanied by release of dense granule content and subsequent ADP-dependent fibrinogen binding to receptors on the glycoprotein (GP) IIb/IIIa complex. The initial interaction of asialo vWF with platelets was mediated by GPIb, as shown by blocking obtained with monoclonal antibody. Inhibition of this initial interaction completely abolished platelet aggregation induced by asialo vWF. The same effect was obtained with a monoclonal anti-GPIIb/IIIa antibody. This, however, did not block asialo vWF binding to platelets, but rather inhibited subsequent fibrinogen binding induced by asialo vWF. Therefore, the latter process was also essential for platelet aggregation under the conditions described. At saturation, asialo vWF induced binding of between 3.2 and 27.7 X 10(3) fibrinogen molecules/platelet, with an apparent dissociation constant between 0.28 and 1.18 X 10(-6) M. This study shows that asialo, and possibly native, vWF acts as a platelet agonist after its binding to GPIb and induces aggregation through a pathway dependent on GPIIb/IIIa-related receptors.

Authors

L De Marco, A Girolami, S Russell, Z M Ruggeri

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 292 7
PDF 105 17
Scanned page 355 3
Citation downloads 138 0
Totals 890 27
Total Views 917
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts