Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111808

Homology of the NH2-terminal amino acid sequences of the heavy and light chains of human monoclonal lupus autoantibodies containing the dominant 16/6 idiotype.

P M Atkinson, G W Lampman, B C Furie, Y Naparstek, R S Schwartz, B D Stollar, and B Furie

Find articles by Atkinson, P. in: PubMed | Google Scholar

Find articles by Lampman, G. in: PubMed | Google Scholar

Find articles by Furie, B. in: PubMed | Google Scholar

Find articles by Naparstek, Y. in: PubMed | Google Scholar

Find articles by Schwartz, R. in: PubMed | Google Scholar

Find articles by Stollar, B. in: PubMed | Google Scholar

Find articles by Furie, B. in: PubMed | Google Scholar

Published April 1, 1985 - More info

Published in Volume 75, Issue 4 on April 1, 1985
J Clin Invest. 1985;75(4):1138–1143. https://doi.org/10.1172/JCI111808.
© 1985 The American Society for Clinical Investigation
Published April 1, 1985 - Version history
View PDF
Abstract

The NH2-terminal amino acid sequences have been determined by automated Edman degradation for the heavy and light chains of five monoclonal IgM anti-DNA autoantibodies that were produced by human-human hybridomas derived from lymphocytes of two patients with systemic lupus erythematosus. Four of the antibodies were closely related to the idiotype system 16/6, whereas the fifth antibody was unrelated idiotypically. The light chains of the 16/6 idiotype-positive autoantibodies (HF2-1/13b, HF2-1/17, HF2-18/2, and HF3-16/6) had identical amino acid sequences from residues 1 to 40. Their framework structures were characteristic of VKI light chains. The light chain of the 16/6 idiotype-negative autoantibody HF6-21/28 was characteristic of the VKII subgroup. The heavy chains of the 16/6 idiotype-positive autoantibodies had nearly identical amino acid sequences from residues 1 to 40. The framework structures were characteristic of the VHIII subgroup. In contrast, the GM4672 fusion partner of the hybridoma produced small quantities of an IgG with a VHI heavy chain and a VKI light chain. The heavy chains of the lupus autoantibodies and the light chains of those autoantibodies that were idiotypically related to the 16/6 system had marked sequence homology with WEA, a Waldenstrom IgM that binds to Klebsiella polysaccharides and expresses the 16/6 idiotype. These results indicate a striking homology in the amino termini of the heavy and light chains of the lupus autoantibodies studied and suggest that the V regions of the heavy and light chains of the 16/6 idiotype-positive DNA-binding lupus auto-antibodies are each encoded by a single germ line gene.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1138
page 1138
icon of scanned page 1139
page 1139
icon of scanned page 1140
page 1140
icon of scanned page 1141
page 1141
icon of scanned page 1142
page 1142
icon of scanned page 1143
page 1143
Version history
  • Version 1 (April 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts