Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111806

Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome.

I Bernardini, W B Rizzo, M Dalakas, J Bernar, and W A Gahl

Find articles by Bernardini, I. in: PubMed | Google Scholar

Find articles by Rizzo, W. in: PubMed | Google Scholar

Find articles by Dalakas, M. in: PubMed | Google Scholar

Find articles by Bernar, J. in: PubMed | Google Scholar

Find articles by Gahl, W. in: PubMed | Google Scholar

Published April 1, 1985 - More info

Published in Volume 75, Issue 4 on April 1, 1985
J Clin Invest. 1985;75(4):1124–1130. https://doi.org/10.1172/JCI111806.
© 1985 The American Society for Clinical Investigation
Published April 1, 1985 - Version history
View PDF
Abstract

Plasma and urine free and acyl carnitine were measured in 19 children with nephropathic cystinosis and renal Fanconi syndrome. Each patient exhibited a deficiency of plasma free carnitine (mean 11.7 +/- 4.0 [SD] nmol/ml) compared with normal control values (42.0 +/- 9.0 nmol/ml) (P less than 0.001). Mean plasma acyl carnitine in the cystinotic subjects was normal. Four subjects with Fanconi syndrome but not cystinosis displayed the same abnormal pattern of plasma carnitine levels; controls with acidosis or a lysosomal storage disorder (Fabry disease), but not Fanconi syndrome, had entirely normal plasma carnitine levels. Two postrenal transplant subjects with cystinosis but without Fanconi syndrome also had normal plasma carnitine levels. Absolute amounts of urinary free carnitine were elevated in cystinotic individuals with Fanconi syndrome. In all 21 subjects with several different etiologies for the Fanconi syndrome, the mean fractional excretion of free carnitine (33%) as well as acyl carnitine (26%) greatly exceeded normal values (3 and 5%, respectively). Total free carnitine excretion in Fanconi syndrome patients correlated with total amino acid excretion (r = 0.76). Two cystinotic patients fasted for 24 h and one idiopathic Fanconi syndrome patient fasted for 5 h showed normal increases in plasma beta-hydroxybutyrate and acetoacetate, which suggested that hepatic fatty acid oxidation was intact despite very low plasma free carnitine levels. Muscle biopsies from two cystinotic subjects with Fanconi syndrome and plasma carnitine deficiency had 8.5 and 13.1 nmol free carnitine per milligram of noncollagen protein, respectively (normal controls, 22.3 and 17.1); total carnitines were 11.8 and 13.3 nmol/mg noncollagen protein (controls 33.5, 20.0). One biopsy revealed a mild increase in lipid droplets. The other showed mild myopathic features with variation in muscle fiber size, small vacuoles, and an increase in lipid droplets. In renal Fanconi syndrome, failure to reabsorb free and acyl carnitine results in a secondary plasma and muscle free carnitine deficiency.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1124
page 1124
icon of scanned page 1125
page 1125
icon of scanned page 1126
page 1126
icon of scanned page 1127
page 1127
icon of scanned page 1128
page 1128
icon of scanned page 1129
page 1129
icon of scanned page 1130
page 1130
Version history
  • Version 1 (April 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts