Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111803

Calcium transport in canine renal basolateral membrane vesicles. Effects of parathyroid hormone.

J E Scoble, S Mills, and K A Hruska

Find articles by Scoble, J. in: PubMed | Google Scholar

Find articles by Mills, S. in: PubMed | Google Scholar

Find articles by Hruska, K. in: PubMed | Google Scholar

Published April 1, 1985 - More info

Published in Volume 75, Issue 4 on April 1, 1985
J Clin Invest. 1985;75(4):1096–1105. https://doi.org/10.1172/JCI111803.
© 1985 The American Society for Clinical Investigation
Published April 1, 1985 - Version history
View PDF
Abstract

The effects of parathyroid hormone were studied on Ca2+ fluxes in canine renal proximal tubular basolateral membrane vesicles (BLMV). Efflux of Ca2+ from preloaded BLMV was found to be stimulated by an external Na+ gradient, and this was inhibited by the Na+ ionophore, monensin, and enhanced by intravesicular negative electrical potentials, which indicated electrogenic Na+/Ca2+ exchange activity. There was a Na+ gradient independent Ca2+ flux, but membrane binding of Ca2+ was excluded from contributing to the Na+ gradient-dependent efflux. The Na+ gradient-dependent flux of Ca2+ was very rapid, and even 2- and 5-s points may not fully represent absolute initial rates. It was saturable with respect to the interaction of Ca2+ and Na+ with an apparent (5 s) Km for Na+-dependent Ca2+ uptake of 10 microM, and an apparent (5 s) Vmax of 0.33 nmol/mg protein per 5 s. The Na+ concentration that yielded half maximal Ca2+ efflux (2 s) was 11 mM, and the Hill coefficient was two or greater. Both Na+ gradient dependent and independent Ca2+ efflux were decreased in BLMV prepared from kidneys of thyroparathyroidectomized (TPTX) dogs, and both were stimulated by parathyroid hormone (PTH) infusion to TPTX dogs. BLMV from TPTX dogs exhibited significantly reduced maximal stimulation of Na+ gradient-dependent Ca2+ uptake with an apparent (5 s) Vmax of 0.23 nmol/mg protein per 5 s, but the apparent Km was 8 microM, which was unchanged from normal. The Na+ gradient independent Ca2+ uptake was also reduced in BLMV from TPTX dogs compared with normal. Thus, PTH stimulated both Na+/Ca2+ exchange activity and Na+ independent Ca2+ flux. In vivo, the latter could result in an elevation of cytosolic Ca2+ by PTH, and this might contribute to the observed decrease in solute transport in the proximal tubule.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1096
page 1096
icon of scanned page 1097
page 1097
icon of scanned page 1098
page 1098
icon of scanned page 1099
page 1099
icon of scanned page 1100
page 1100
icon of scanned page 1101
page 1101
icon of scanned page 1102
page 1102
icon of scanned page 1103
page 1103
icon of scanned page 1104
page 1104
icon of scanned page 1105
page 1105
Version history
  • Version 1 (April 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts