Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111738

Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study).

C Florent, B Flourie, A Leblond, M Rautureau, J J Bernier, and J C Rambaud

Find articles by Florent, C. in: JCI | PubMed | Google Scholar

Find articles by Flourie, B. in: JCI | PubMed | Google Scholar

Find articles by Leblond, A. in: JCI | PubMed | Google Scholar

Find articles by Rautureau, M. in: JCI | PubMed | Google Scholar

Find articles by Bernier, J. in: JCI | PubMed | Google Scholar

Find articles by Rambaud, J. in: JCI | PubMed | Google Scholar

Published February 1, 1985 - More info

Published in Volume 75, Issue 2 on February 1, 1985
J Clin Invest. 1985;75(2):608–613. https://doi.org/10.1172/JCI111738.
© 1985 The American Society for Clinical Investigation
Published February 1, 1985 - Version history
View PDF
Abstract

The effects of a chronic load of nonabsorbable sugars on intracolonic bacterial metabolism of carbohydrates and on H2 breath excretion are disputed. However, most of the discussion relies on indirect evidence or on results of in vitro studies. Thus, we attempted to assess directly and in vivo the effects on intracolonic metabolism of lactulose of a chronic oral load of this nonabsorbable disaccharide. 20 g of lactulose was given orally twice daily during 8 d to eight normal volunteers. In all, breath H2 concentration was measured on days 1 and 8 after ingestion of the morning lactulose dose. In four subjects, stools were collected during 2 d at the beginning and at the end of the lactulose maintenance period to measure fecal pH and daily outputs of carbohydrates and beta-galactosidase. The four other subjects were intubated on days 1 and 8 to measure the pH and the concentrations of carbohydrates, lactic acid, and volatile fatty acids (VFA) in the distal ileum and cecal contents. Moreover, 14C-lactulose was added to cold lactulose and 14CO2 breath outputs determined. Pulmonary H2 excretion fell from day 1 to day 8 (P less than 0.05), whereas 14CO2 excretion increased (P less than 0.01). Fecal water pH, lactic acid, and VFA concentrations did not vary between the two stool collection periods. 24-h fecal weight, fecal water, and carbohydrate outputs showed a trend to decrease between days 1 and 2 and days 7-8, whereas beta-galactosidase activity rose markedly (P less than 0.01). No significant variations were observed for all parameters measured in ileal fluid. In the cecum, areas under the concentration curves decreased from day 1 to day 8 for lactulose, galactose, and fructose (P less than 0.01), while an increase was found for lactic acid (P less than 0.001), acetic acid (P less than 0.0001), and total VFA (P less than 0.001). Cecal fluid pH dropped faster (P less than 0.05) and to a lower level (P less than 0.05) on day 8 than on day 1. These data clearly show that a chronic load of a nonabsorbable sugar induces changes in colonic bacterial metabolic pathways resulting in a better efficiency of the flora to digest the carbohydrate.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 608
page 608
icon of scanned page 609
page 609
icon of scanned page 610
page 610
icon of scanned page 611
page 611
icon of scanned page 612
page 612
icon of scanned page 613
page 613
Version history
  • Version 1 (February 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts