Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111721

Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system.

K Dharmsathaphorn, K G Mandel, H Masui, and J A McRoberts

Find articles by Dharmsathaphorn, K. in: JCI | PubMed | Google Scholar

Find articles by Mandel, K. in: JCI | PubMed | Google Scholar

Find articles by Masui, H. in: JCI | PubMed | Google Scholar

Find articles by McRoberts, J. in: JCI | PubMed | Google Scholar

Published February 1, 1985 - More info

Published in Volume 75, Issue 2 on February 1, 1985
J Clin Invest. 1985;75(2):462–471. https://doi.org/10.1172/JCI111721.
© 1985 The American Society for Clinical Investigation
Published February 1, 1985 - Version history
View PDF
Abstract

We have used a well-differentiated human colonic cell line, the T84 cell line, as a model system to study the pathways of cellular ion transport involved in vasoactive intestinal polypeptide (VIP)-induced chloride secretion. A modified Ussing chamber was used to study transepithelial Na+ and Cl- fluxes across confluent monolayer cultures of the T84 cells grown on permeable supports. In a manner analogous to isolated intestine, the addition of VIP caused an increase of net Cl- secretion which accounted for the increase in short circuit current (Isc). The effect of VIP on Isc was dose dependent with a threshold stimulation at 10(-10) M VIP, and a maximal effect at 10(-8) M. Bumetanide prevented or reversed the response to VIP. Inhibition by bumetanide occurred promptly when it was added to the serosal, but not to the mucosal bathing media. Ion replacement studies demonstrated that the response to VIP required the simultaneous presence of Na+, K+, and Cl- in the serosal media. Utilizing cellular ion uptake techniques, we describe an interdependence of bumetanide-sensitive 22Na+, 86Rb+, and 36Cl- uptake, which is indicative of a Na+,K+,Cl- cotransport system in this cell line. This transport pathway was localized to the basolateral membrane. Extrapolated initial velocities of uptake for each of the three ions was consistent with the electroneutral cotransport of 1 Na+:1 K+ (Rb+):2 Cl-. Our findings indicate that VIP-induced Cl- secretion intimately involves a bumetanide-sensitive Na+,K+,Cl- cotransport system which is functionally localized to the basolateral membrane.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 462
page 462
icon of scanned page 463
page 463
icon of scanned page 464
page 464
icon of scanned page 465
page 465
icon of scanned page 466
page 466
icon of scanned page 467
page 467
icon of scanned page 468
page 468
icon of scanned page 469
page 469
icon of scanned page 470
page 470
icon of scanned page 471
page 471
Version history
  • Version 1 (February 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts