Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III.
C S Wang, … , H U Kloer, P Alaupovic
C S Wang, … , H U Kloer, P Alaupovic
Published February 1, 1985
Citation Information: J Clin Invest. 1985;75(2):384-390. https://doi.org/10.1172/JCI111711.
View: Text | PDF
Research Article

Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III.

  • Text
  • PDF
Abstract

From a total of 22 hypertriglyceridemic subjects tested, 14 subjects were selected on the basis of normal postheparin plasma lipoprotein lipase (LPL) levels and the presence of LPL inhibitory activity in their fasting plasma. The inhibitory activity was detected in both the lipoprotein fraction (d less than 1.25 g/ml) and the lipoprotein-deficient fraction (d greater than 1.25 g/ml). Correlational analyses of LPL inhibitory activity and apolipoprotein levels present in the lipoprotein fraction (d less than 1.25 g/ml) indicated that only apolipoprotein C-III (ApoC-III) was significantly correlated (r = 0.602, P less than 0.05) with the inhibition activity of the lipoprotein fraction. Furthermore, it was found that LPL-inhibitory activities of the plasma lipoprotein fraction and lipoprotein-deficient fraction were also correlated (r = 0.745, P less than 0.005), though the activity in the lipoprotein-deficient plasma was not related to the ApoC-III or apolipoprotein E levels. Additional correlational analyses indicated that the LPL levels in the postheparin plasma of these subjects were inversely related to the levels of plasma apolipoproteins C-II, C-III, and E. To explain some of these observations, we directly examined the in vitro effect of ApoC-III on LPL activity. The addition of ApoC-III-2 resulted in a decreased rate of lipolysis of human very low density lipoproteins by LPL. Kinetic analyses indicated that ApoC-III-2 was a noncompetitive inhibitor of LPL suggesting a direct interaction of the inhibitor with LPL. Results of these studies suggest that ApoC-III may represent a physiologic modulator of LPL activity levels and that the incidence of LPL inhibitory activity in the plasma of hypertriglyceridemic subjects is more common than previously recognized.

Authors

C S Wang, W J McConathy, H U Kloer, P Alaupovic

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 502 13
PDF 53 19
Scanned page 281 19
Citation downloads 58 0
Totals 894 51
Total Views 945
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts