Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111694

Characterization of the clotting activities of structurally different forms of activated factor IX. Enzymatic properties of normal human factor IXa alpha, factor IXa beta, and activated factor IX Chapel Hill.

M J Griffith, L Breitkreutz, H Trapp, E Briet, C M Noyes, R L Lundblad, and H R Roberts

Find articles by Griffith, M. in: PubMed | Google Scholar

Find articles by Breitkreutz, L. in: PubMed | Google Scholar

Find articles by Trapp, H. in: PubMed | Google Scholar

Find articles by Briet, E. in: PubMed | Google Scholar

Find articles by Noyes, C. in: PubMed | Google Scholar

Find articles by Lundblad, R. in: PubMed | Google Scholar

Find articles by Roberts, H. in: PubMed | Google Scholar

Published January 1, 1985 - More info

Published in Volume 75, Issue 1 on January 1, 1985
J Clin Invest. 1985;75(1):4–10. https://doi.org/10.1172/JCI111694.
© 1985 The American Society for Clinical Investigation
Published January 1, 1985 - Version history
View PDF
Abstract

Two structurally different forms of activated human Factor IX (Factor IXa alpha and IXa beta) have been previously reported to have essentially identical clotting activity in vitro. Although it has been shown that activated Factor IX Chapel Hill, an abnormal Factor IX isolated from the plasma of a patient with mild hemophilia B, and normal Factor IXa alpha are structurally very similar, the clotting activity of activated Factor IX Chapel Hill is much lower (approximately fivefold) than that of normal Factor IXa beta. In the present study we have prepared activated Factor IX by incubating human Factor IX with calcium and Russell's viper venom covalently bound to agarose. Fractionation of the activated Factor IX by high-performance liquid chromatography demonstrated the presence of both Factors IXa alpha and IXa beta. On the basis of active site concentration, determined by titration with antithrombin III, the clotting activities of activated Factor IX Chapel Hill and IXa alpha were similar, but both activities were less than 20% of the clotting activity of Factor IXa beta. Activated Factor IX activity was also measured in the absence of calcium, phospholipid, and Factor VIII, by determination of the rate of Factor X activation in the presence of polylysine. In the presence of polylysine, the rates of Factor X activation by activated Factor IX Chapel Hill, Factor IXa alpha, and Factor IXa beta were essentially identical. We conclude that the clotting activity of activated Factor IX Chapel Hill is reduced when compared with that of Factor IXa beta but essentially normal when compared with that of Factor IXa alpha.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 4
page 4
icon of scanned page 5
page 5
icon of scanned page 6
page 6
icon of scanned page 7
page 7
icon of scanned page 8
page 8
icon of scanned page 9
page 9
icon of scanned page 10
page 10
Version history
  • Version 1 (January 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts