Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111689

Sn-protoporphyrin rapidly and markedly enhances the heme saturation of hepatic tryptophan pyrrolase. Evidence that this synthetic metalloporphyrin increases the functional content of heme in the liver.

A Kappas, G S Drummond, and M K Sardana

Find articles by Kappas, A. in: PubMed | Google Scholar

Find articles by Drummond, G. in: PubMed | Google Scholar

Find articles by Sardana, M. in: PubMed | Google Scholar

Published January 1, 1985 - More info

Published in Volume 75, Issue 1 on January 1, 1985
J Clin Invest. 1985;75(1):302–305. https://doi.org/10.1172/JCI111689.
© 1985 The American Society for Clinical Investigation
Published January 1, 1985 - Version history
View PDF
Abstract

Sn-protoporphyrin is a potent competitive inhibitor of heme oxygenase, the rate-limiting enzyme in heme degradation to bile pigment, and has been successfully utilized to suppress hyperbilirubinemia in a variety of experimental and naturally occurring forms of jaundice in animals and man. The compound is presumed to act in vivo primarily by inhibiting heme oxidation; thus it would be reasonable to expect that preservation of some functional moiety of cellular heme from degradation by heme oxygenase would occur after Sn-protoporphyrin administration. We have examined this question in liver by studying the heme saturation of tryptophan pyrrolase, the heme-dependent enzyme which controls the first and rate-limiting step in the catabolism of L-tryptophan. Sn-protoporphyrin, in doses (10 mumol/kg body wt) which entirely suppress neonatal hyperbilirubinemia in the experimental animal, leads to a very rapid (approximately 30-60 min) increase in the heme saturation of tryptophan pyrrolase from normal levels of approximately 50-60% to nearly 100%. The effect peaks at 1-2 h and lasts for at least 12 h. Sn-protoporphyrin is also able to block the rapid and marked decline in heme saturation of tryptophan pyrrolase elicited by inorganic cobalt, a potent inducer of heme oxygenase in liver. These findings establish clearly that after the administration of Sn-protoporphyrin in the whole animal, a functionally active heme pool, the one related to tryptophan pyrrolase, is rapidly increased in liver, confirming that the metalloporphyrin inhibits the degradation of endogenous heme by heme oxygenase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 302
page 302
icon of scanned page 303
page 303
icon of scanned page 304
page 304
icon of scanned page 305
page 305
Version history
  • Version 1 (January 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts