Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hyperuricemia in glycogen storage disease type I. Contributions by hypoglycemia and hyperglucagonemia to increased urate production.
J L Cohen, … , J Faller, I H Fox
J L Cohen, … , J Faller, I H Fox
Published January 1, 1985
Citation Information: J Clin Invest. 1985;75(1):251-257. https://doi.org/10.1172/JCI111681.
View: Text | PDF
Research Article

Hyperuricemia in glycogen storage disease type I. Contributions by hypoglycemia and hyperglucagonemia to increased urate production.

  • Text
  • PDF
Abstract

Studies were performed to determine whether hypoglycemia or the glucagon response to hypoglycemia increases uric acid production in glycogen storage disease type I (glucose-6-phosphatase deficiency). Three adults with this disease had hyperuricemia (serum urate, 11.3-12.4 mg/dl) and reduced renal clearance of urate (renal urate clearance, 1.1-3.1 ml/min). These abnormalities were improved in one patient by intravenous glucose infusion for 1 mo, suggesting a role for hypoglycemia and its attendant effects on urate metabolism and excretion. A pharmacologic dose of glucagon caused a rise in serum urate from 11.4 to 13.0 mg/dl, a ninefold increase in urinary excretion of oxypurines, a 65% increase in urinary radioactivity derived from radioactively labeled adenine nucleotides, and a 90% increase in urinary uric acid excretion. These changes indicate that intravenous glucagon increases ATP breakdown to its degradation products and thereby stimulates uric acid production. To observe whether physiologic changes in serum glucagon modulate ATP degradation, uric acid production was compared during saline and somatostatin infusions. Serum urate, urinary oxypurine, radioactivity, and uric acid excretion increased during saline infusion as patients became hypoglycemic. Infusion of somatostatin suppressed these increases despite hypoglycemia and decreased the elevated plasma glucagon levels from a mean of 81.3 to 52.2 pg/ml. These data suggest that hypoglycemia can stimulate uric acid synthesis in glucose-6-phosphatase deficiency. Glucagon contributes to this response by activating ATP degradation to uric acid.

Authors

J L Cohen, A Vinik, J Faller, I H Fox

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 202 266
PDF 57 212
Scanned page 297 45
Citation downloads 71 0
Totals 627 523
Total Views 1,150
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts