Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111676

Isolation of high density lipoproteins from rat intestinal epithelial cells.

A M Magun, T A Brasitus, and R M Glickman

Find articles by Magun, A. in: PubMed | Google Scholar

Find articles by Brasitus, T. in: PubMed | Google Scholar

Find articles by Glickman, R. in: PubMed | Google Scholar

Published January 1, 1985 - More info

Published in Volume 75, Issue 1 on January 1, 1985
J Clin Invest. 1985;75(1):209–218. https://doi.org/10.1172/JCI111676.
© 1985 The American Society for Clinical Investigation
Published January 1, 1985 - Version history
View PDF
Abstract

Previous studies have defined forms of high density lipoproteins (HDL) in rat mesenteric lymph, suggesting that they have a secretory origin. This study describes the isolation and characterization of intestinal intracellular HDL. Two preparations were made as follows: (a) Rat enterocytes were isolated and a Golgi organelle fraction was prepared. (b) Cell homogenates were subjected to nitrogen cavitation and a cytoplasmic fraction was prepared. Lipoproteins were isolated from both preparations by sequential ultracentrifugation. When the HDL fraction (1.07-1.21 g/ml) was subjected to isopyknic density gradient ultracentrifugation, a peak of apoproteins A-I and B (apoA-I and apoB, respectively) was found at a density of 1.11-1.14 g/ml. Electron microscopy of the fraction showed spherical particles ranging in size from 6 to 13 nm. Immunoelectrophoresis revealed a precipitin arc in the alpha region against apoA-I which extended into the pre-beta region where a precipitin arc against apoB was also seen. ApoB antisera depleted the pre-beta particles whereas the alpha migrating particles remained. Lipid analysis of the whole HDL fraction revealed phospholipid, cholesteryl ester, and triglyceride as the major lipids. [3H]leucine was then administered into the duodenum and a radiolabeled intracellular HDL fraction was isolated. The newly synthesized apoproteins of the HDL fraction, as determined by gel electrophoresis, were apoB, apoA-I, and apolipoprotein A-IV (ApoA-IV). Immunoprecipitation of the apoB particles revealed apoA-I and apoA-IV in the supernatant. These data demonstrate that there are at least two intracellular intestinal forms of HDL particles, one of which contains apoB. The other particle contains apoA-I and apoA-IV, has alpha mobility, is spherical, and resembles a particle found in the lymph.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 209
page 209
icon of scanned page 210
page 210
icon of scanned page 211
page 211
icon of scanned page 212
page 212
icon of scanned page 213
page 213
icon of scanned page 214
page 214
icon of scanned page 215
page 215
icon of scanned page 216
page 216
icon of scanned page 217
page 217
icon of scanned page 218
page 218
Version history
  • Version 1 (January 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts