Asialo von Willebrand factor (AS-vWf) binds to and aggregates normal human platelets in the absence of ristocetin. Maximal specific binding of AS-vWf is 1-2 micrograms vWf protein/10(8) platelets. Despite the specificity of the binding, only 60% of the bound AS-vWf can be dissociated after equilibrium has been reached. We investigated the site of binding and the mechanism of aggregation of platelets by AS-vWf by (a) pre-incubating platelets with either of two monoclonal antibodies, one against glycoprotein Ib (GPIb) or a second against the glycoprotein IIb/IIIa complex (GPIIb/IIIa), and (b) varying the concentration of fibrinogen in the medium. The results of our studies indicate that AS-vWf binds initially to GPIb. This binding then results in the exposure of receptors for AS-vWf on GPIIb/IIIa. In the presence of plasma fibrinogen, both AS-vWf and fibrinogen bind to GPIIb/IIIa. In the presence of plasma fibrinogen, 50% more AS-vWf binds to the platelet, and this additional AS-vWf binds almost exclusively to GPIIb/IIIa. Despite this enhanced binding of AS-vWf in the absence of fibrinogen, platelet aggregation is much less than that which occurs in the presence of plasma fibrinogen. Comparative studies of AS-vWf binding to normal platelets and the platelets of patients with Glanzmann's thrombasthenia reveal decreased binding to the thrombasthenic platelets and a marked decrease in the extent of platelet aggregation. These studies indicate that AS-vWf binding to, and ensuing aggregation of, platelets is different from that observed with intact vWf protein when platelets are stimulated with either ristocetin or thrombin. The AS-vWf binds to GPIb which, in turn, makes additional AS-vWf receptors available on GPIIb/IIIa. If plasma fibrinogen is present, it competes with the AS-vWf for binding to GPIIb/IIIa and causes aggregation of platelets. In the presence of plasma fibrinogen, more of the AS-vWf binds to GPIIb/IIIa, but this AS-vWf is much less effective than fibrinogen in supporting platelet aggregation.
H R Grainick, S B Williams, B S Coller
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 139 | 3 |
54 | 10 | |
Figure | 0 | 2 |
Scanned page | 303 | 0 |
Citation downloads | 75 | 0 |
Totals | 571 | 15 |
Total Views | 586 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.