Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Relationships between the cytotoxicity of tiazofurin and its metabolism by cultured human lung cancer cells.
D N Carney, G S Ahluwalia, H N Jayaram, D A Cooney, D G Johns
D N Carney, G S Ahluwalia, H N Jayaram, D A Cooney, D G Johns
View: Text | PDF
Research Article

Relationships between the cytotoxicity of tiazofurin and its metabolism by cultured human lung cancer cells.

  • Text
  • PDF
Abstract

The antitumor activity of the antineoplastic agent, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide), has previously been shown to require intracellular anabolism of the drug to a nicotinamide adenine dinucleotide (NAD) analog (2-beta-D-ribofuranosylthiazole-4-carboxamide adenine dinucleotide or "tiazofurin adenine dinucleotide"), which then acts as a potent inhibitor of the target enzyme inosine monophosphate (IMP) dehydrogenase. Inhibition of the latter enzyme in turn brings about a profound depletion of intracellular guanosine nucleotides essential for tumor cell growth and replication. In the present study, the cytotoxicity and metabolism of tiazofurin have been examined in six human lung cancer cell lines. At the pharmacologically attainable drug concentration of 100 microM, colony survival was less than 1.5% in three cell lines ("sensitive"), while survival in the remaining three was greater than 50% ("resistant"). The metabolism of tritiated tiazofurin was examined at concentrations ranging from 0.5 to 100 microM following both brief (6 h) and protracted (14 d) exposures. The sensitive lines accumulated concentrations of tiazofurin adenine dinucleotide that were approximately 10 times those achieved by the resistant lines at both time points. We also observed tendencies for the sensitive cell lines to exhibit: (a) higher specific activities of NAD pyrophosphorylase, the enzyme required for the synthesis of tiazofurin adenine dinucleotide, (b) significantly lower levels of a phosphodiesterase which degrades the latter dinucleotide, (c) greater inhibition of the target enzyme IMP dehydrogenase, and (d) greater depressions of guanosine nucleotide pools after drug treatment. By contrast, the basal levels of IMP dehydrogenase and purine nucleotides in these six lines did not correlate in any obvious way with their responsiveness or resistance. The accumulation and monophosphorylation of parent drug were also not prognostic variables. These studies thus suggest that the extent of accumulation of tiazofurin adenine dinucleotide, as regulated by its synthetic and degradative enzyme activities, is the single most predictive determinant of the responsiveness of cultured human lung tumor cells to tiazofurin.

Authors

D N Carney, G S Ahluwalia, H N Jayaram, D A Cooney, D G Johns

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 173 9
PDF 64 1
Scanned page 292 0
Citation downloads 74 0
Totals 603 10
Total Views 613
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts