Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111658

Insulin within islets is a physiologic glucagon release inhibitor.

H Maruyama, A Hisatomi, L Orci, G M Grodsky, and R H Unger

Find articles by Maruyama, H. in: PubMed | Google Scholar

Find articles by Hisatomi, A. in: PubMed | Google Scholar

Find articles by Orci, L. in: PubMed | Google Scholar

Find articles by Grodsky, G. in: PubMed | Google Scholar

Find articles by Unger, R. in: PubMed | Google Scholar

Published December 1, 1984 - More info

Published in Volume 74, Issue 6 on December 1, 1984
J Clin Invest. 1984;74(6):2296–2299. https://doi.org/10.1172/JCI111658.
© 1984 The American Society for Clinical Investigation
Published December 1, 1984 - Version history
View PDF
Abstract

To determine if glucagon secretion is under physiological control of intra-islet insulin, pancreata from normal rats were perfused at a 100 mg/dl glucose concentration with either guinea pig antiinsulin serum or normal guinea pig serum in a nonrecirculating system. Perfusion of antiserum was followed within 3 min by a significant rise in glucagon that reached peak levels three times the base-line values and assumed a hectic pattern that returned rapidly to base-line levels upon termination of the antiserum perfusion. Nonimmune guinea pig serum had no effect. To gain insight into the probable site of insulin neutralization, 125I-labeled human gamma-globulin was added to antiserum or nonimmune serum and perfused for 3 min. More than 83% of the radioactivity was recovered in the effluent within 3 min after termination of the infusion, and only 0.05 +/- 0.015% of the radioactivity injected was present in the pancreas 10 min after the perfusion. The maximal amount of insulin that could be completely bound to insulin antibody at a dilution and under conditions simulating those of the perfusion experiments was 20 mU/min. It is concluded that insulin maintains an ongoing restraint upon alpha cell secretion and in its absence causes hectic hypersecretion of glucagon. This restraint probably occurs largely in the intravascular compartment. Loss of this release-inhibiting action of insulin may account for initiation of hyperglucagonemia in insulin-deficient states.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2296
page 2296
icon of scanned page 2297
page 2297
icon of scanned page 2298
page 2298
icon of scanned page 2299
page 2299
Version history
  • Version 1 (December 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts