Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111629

Use of carbon monoxide to measure luminal stirring in the rat gut.

M D Levitt, T Aufderheide, C A Fetzer, J H Bond, and D G Levitt

Find articles by Levitt, M. in: PubMed | Google Scholar

Find articles by Aufderheide, T. in: PubMed | Google Scholar

Find articles by Fetzer, C. in: PubMed | Google Scholar

Find articles by Bond, J. in: PubMed | Google Scholar

Find articles by Levitt, D. in: PubMed | Google Scholar

Published December 1, 1984 - More info

Published in Volume 74, Issue 6 on December 1, 1984
J Clin Invest. 1984;74(6):2056–2064. https://doi.org/10.1172/JCI111629.
© 1984 The American Society for Clinical Investigation
Published December 1, 1984 - Version history
View PDF
Abstract

We used carbon monoxide (CO) as a probe to quantitatively measure intestinal unstirred water layers in vivo. CO has several features that make it uniquely well suited to measure the unstirred layer in that its tight binding to hemoglobin makes uptake diffusion limited, and its relatively high lipid solubility renders membrane resistance negligible relative to the water barriers of the unstirred layer and epithelial cell. The unique application of CO was the measurement of the absorption rate of CO both from the gas phase as well as a solute dissolved in saline. Several lines of evidence showed that a gut stripped free of saline and then filled with gas contained a negligible unstirred layer. Thus, absorption of CO from the gas phase measured resistance of just the epithelial cell. Subtraction of this value from the resistance of CO absorption from saline provided a direct measure of unstirred layer resistance. Studies in the rat showed for a 3-min absorption period that the conventionally calculated apparent unstirred layer for the jejunum was 411 micron and for the colon was 240 micron. However, this conventionally calculated unstirred layer resistance did not truly depict the situation in the rat gut, since there was a continuing depletion of CO from outer surfaces of luminal contents throughout the experiment period. This produced a continually increasing diffusion barrier with time. Calculation of expected absorption rate from unstirred cylinders with the dimensions of the rat gut indicated that there was virtually no stirring in the small intestine and minimal stirring in the colon. The technique described in this paper appears to be simpler and to require fewer assumptions for validity than other techniques previously used to measure unstirred layers in vivo.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2056
page 2056
icon of scanned page 2057
page 2057
icon of scanned page 2058
page 2058
icon of scanned page 2059
page 2059
icon of scanned page 2060
page 2060
icon of scanned page 2061
page 2061
icon of scanned page 2062
page 2062
icon of scanned page 2063
page 2063
icon of scanned page 2064
page 2064
Version history
  • Version 1 (December 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts