Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase.
J Yahalom, … , Z Fuks, I Vlodavsky
J Yahalom, … , Z Fuks, I Vlodavsky
Published November 1, 1984
Citation Information: J Clin Invest. 1984;74(5):1842-1849. https://doi.org/10.1172/JCI111603.
View: Text | PDF
Research Article

Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase.

  • Text
  • PDF
Abstract

Cultured vascular and corneal endothelial cells produce an underlying extracellular matrix (ECM) which induces platelet adherence, aggregation, and release reaction. Incubation of a metabolically (35S)O = 4-labeled ECM with platelet-rich plasma or washed platelets, but not with platelet-poor plasma, resulted in degradation of its heparan sulfate-containing proteoglycans into labeled fragments four to five times smaller than intact glycosaminoglycan side chains. These fragments were sensitive to deamination with nitrous acid and were not produced in the presence of heparin, indicating that heparan sulfate in the ECM is susceptible to cleavage by the platelet heparitinase. This degradation required adhesion of platelets to the ECM rather than aggregation since it was not inhibited by aspirin, which prevented platelet aggregation but not adherence. The enzyme was not released during aggregation of platelets on the ECM but was readily liberated upon their exposure to thrombin. This liberation was inhibited in the presence of prostacyclin (PGI2). Isolated high molecular weight proteoglycans first released from the ECM by incubation with platelet poor plasma served as a substrate for further degradation by the platelet heparitinase, suggesting a cascade mechanism for degradation of heparan sulfate in the ECM. Heparitinase, although to a lower level, was also active when washed platelets were added on top of a confluent endothelial cell monolayer covering the (35S)O = 4-labeled ECM. It is suggested that the platelet heparitinase may be involved in the impairment of the integrity of the vessel wall and thus facilitate the extravasation of blood-borne cells.

Authors

J Yahalom, A Eldor, Z Fuks, I Vlodavsky

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts