Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111593

Inhibition of lipolysis by adenosine is potentiated with age.

B B Hoffman, H Chang, Z Farahbakhsh, and G Reaven

Find articles by Hoffman, B. in: JCI | PubMed | Google Scholar

Find articles by Chang, H. in: JCI | PubMed | Google Scholar

Find articles by Farahbakhsh, Z. in: JCI | PubMed | Google Scholar

Find articles by Reaven, G. in: JCI | PubMed | Google Scholar

Published November 1, 1984 - More info

Published in Volume 74, Issue 5 on November 1, 1984
J Clin Invest. 1984;74(5):1750–1755. https://doi.org/10.1172/JCI111593.
© 1984 The American Society for Clinical Investigation
Published November 1, 1984 - Version history
View PDF
Abstract

The ability of a variety of hormones to activate cells declines with age. We have investigated the mechanism for the reduced ability of beta adrenergic stimulation to activate lipolysis in fat cells from older rats. Previously, we have found that these cells have an intact lipolytic response to a cAMP analogue but diminished cAMP accumulation after isoproterenol stimulation, suggesting that the blunted cAMP response is rate limiting. In the present study we have tested the hypothesis that enhanced inhibition of lipolysis by endogenously released adenosine accounts for the diminished lipolysis. Adenosine deaminase was added to media containing the adipocytes from older rats to remove endogenous adenosine. Under these conditions beta adrenergic stimulation of lipolysis is intact in fat cells from older rats. The adenosine analogue N6-phenylisopropyladenosine more effectively inhibited lipolysis in the older group (77 +/- 6%) than in the younger group (46 +/- 5%), suggesting that enhanced efficacy of endogenous adenosine may account for the reduced lipolytic response to catecholamines. When pertussis vaccine was used to functionally inactivate adenosine receptors in adipocytes from the younger and older rats, the ability of isoproterenol to activate lipolysis was restored in the older group. All the data are consistent with the hypothesis that enhanced inhibitory effects of adenosine explain the diminished ability of beta adrenergic agonists to activate lipolysis. It is possible that enhanced inhibitory pathways may be involved in blunting responses to stimulatory hormones in other tissues from older animals.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1750
page 1750
icon of scanned page 1751
page 1751
icon of scanned page 1752
page 1752
icon of scanned page 1753
page 1753
icon of scanned page 1754
page 1754
icon of scanned page 1755
page 1755
Version history
  • Version 1 (November 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts