Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Pathogenesis of hepatic steatosis in the parenterally fed rat.
R I Hall, … , M G Bozovic, S H Quarfordt
R I Hall, … , M G Bozovic, S H Quarfordt
Published November 1, 1984
Citation Information: J Clin Invest. 1984;74(5):1658-1668. https://doi.org/10.1172/JCI111582.
View: Text | PDF
Research Article

Pathogenesis of hepatic steatosis in the parenterally fed rat.

  • Text
  • PDF
Abstract

Hepatic steatosis frequently complicates total parenteral nutrition (TPN). Some of the mechanisms responsible were examined in rats receiving calories as dextrose (CHO-TPN) or dextrose plus lipid emulsion (Lipid-TPN). Hepatic triglyceride content increased approximately threefold after CHO-TPN and twofold after Lipid-TPN (P less than 0.02). Hepatic triglyceride fatty acid composition reflected endogenous synthesis. Hepatic acetyl-Coenzyme A carboxylase specific activity increased fourfold after CHO-TPN and twofold after Lipid-TPN, and it correlated positively with hepatic lipid content (r = 0.82). The activities of the microsomal enzymes of complex lipid synthesis were unchanged in the TPN groups. Both TPN regimens suppressed hepatic triglyceride secretion, measured by the rise in plasma triglyceride and the incorporation of [14C]palmitic acid into plasma triglyceride after intravenous Triton. Hepatic triglyceride secretion correlated negatively with total hepatic lipid content (r = -0.89). CHO-TPN increased the uptake of a radiolabeled triglyceride emulsion and increased hepatic lipase activity, whereas Lipid-TPN decreased both. Both adipose and cardiac lipase were higher for Lipid-TPN animals than for CHO-TPN or control animals. Hepatic 14C-triglyceride content was increased in both TPN groups as compared with controls after the injection of 1-[14C]-palmitic acid. This increment was proportional to the decreased hepatic secretion. Triglyceride fatty acid oxidation was significantly suppressed by CHO-TPN, less so by Lipid-TPN. Free fatty acid oxidation was suppressed only by CHO-TPN. The results suggest that the steatosis induced by TPN in rats was due to enhanced hepatic synthesis of fatty acid and reduced triglyceride secretion. Reduced hepatic triglyceride uptake, enhanced fatty acid oxidation, and enhanced peripheral tissue plasma triglyceride lipolysis when CHO-TPN is supplemented with lipid may modulate the accumulation of hepatic triglyceride and, along with reduced synthesis of fatty acid, lead to a lower hepatic triglyceride content.

Authors

R I Hall, J P Grant, L H Ross, R A Coleman, M G Bozovic, S H Quarfordt

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 97 1
PDF 43 13
Scanned page 371 0
Citation downloads 49 0
Totals 560 14
Total Views 574
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts