Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111551

Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs.

D H Wasserman, H L Lickley, and M Vranic

Find articles by Wasserman, D. in: PubMed | Google Scholar

Find articles by Lickley, H. in: PubMed | Google Scholar

Find articles by Vranic, M. in: PubMed | Google Scholar

Published October 1, 1984 - More info

Published in Volume 74, Issue 4 on October 1, 1984
J Clin Invest. 1984;74(4):1404–1413. https://doi.org/10.1172/JCI111551.
© 1984 The American Society for Clinical Investigation
Published October 1, 1984 - Version history
View PDF
Abstract

Somatostatin (ST)-induced glucagon suppression results in hypoglycemia during rest and exercise. To further delineate the role of glucagon and interactions between glucagon and the catecholamines during exercise, we compensated for the counterregulatory responses to hypoglycemia with glucose replacement. Five dogs were run (100 m/min, 12 degrees) during exercise alone, exercise plus ST infusion (0.5 micrograms/kg-min), or exercise plus. ST plus glucose replacement (3.5 mg/kg-min) to maintain euglycemia. During exercise alone there was a maximum increase in immunoreactive glucagon (IRG), epinephrine (E), norepinephrine (NE), FFA, and lactate (L) of 306 +/- 147 pg/ml, 360 +/- 80 pg/ml, 443 +/- 140 pg/ml, 541 +/- 173 mu eq/liter, and 6.3 +/- 0.7 mg/dl, respectively. Immunoreactive insulin (IRI) decreased by 10.2 +/- 4 micro/ml and cortisol (C) increased only slightly (2.1 +/- 0.3 micrograms/dl). The rates of glucose production (Ra) and glucose uptake (Rd) rose markedly by 6.6 +/- 2.2 mg/kg-min and 6.2 +/- 1.5 mg/kg-min. In contrast, when ST was given during exercise, IRG fell transiently by 130 +/- 20 pg/ml, Ra rose by only 3.6 +/- 0.5 mg/kg-min, and plasma glucose decreased by 29 +/- 6 mg/dl. The decrease in IRI was no different than with exercise alone (10.2 +/- 2.0 microU/ml). As plasma glucose fell, C, FFA, and L rose excessively to peaks of 5.4 +/- 1.3 micrograms/dl, 1,166 +/- 182 mu eq/liter and 15.5 +/- 7.0 mg/dl. The peak increment in E (765 +/- 287 pg/ml) coincided with the nadir in plasma glucose and was four times greater than during normoglycemic exercise. Hypoglycemia did not affect the rise in NE. The increase in Rd was attenuated and reached a peak of only 3.7 +/- 0.8 mg/kg-min. During glucose replacement, IRG decreased by 109 +/- 30 pg/ml and the IRI response did not differ from the response to normal exercise. Ra rose minimally by 1.5 +/- 0.3 mg/kg-min. The changes in E, C, Rd, and L were restored to normal, whereas the FFA response remained excessive. In all protocols increments in Ra were directly correlated to the IRG/IRI molar ratio while no correlation could be demonstrated between epinephrine or norepinephrine and Ra. In conclusion, (a) glucagon controlled approximately 70% of the increase of Ra during exercise. This became evident when counterregulatory responses to hypoglycemia (E and C) were obviated by glucose replacement; (b) increments in Ra were strongly correlated to the IRG/IRI molar ratio but not the plasma catecholamine concentration; (c) the main role of E in hypoglycemia was to limit glucose uptake by the muscle; (d) with glucagon suppression, glucose production was deficient but a further decline of glucose was prevented through the peripheral effects of E, (e) the hypoglycemic stimulus for E secretion was facilitated by exercise; and (f) we hypothesize that an important role of glucagons during exercise could be to spare muscle glycogen by stimulating glucose production by the liver.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1404
page 1404
icon of scanned page 1405
page 1405
icon of scanned page 1406
page 1406
icon of scanned page 1407
page 1407
icon of scanned page 1408
page 1408
icon of scanned page 1409
page 1409
icon of scanned page 1410
page 1410
icon of scanned page 1411
page 1411
icon of scanned page 1412
page 1412
icon of scanned page 1413
page 1413
Version history
  • Version 1 (October 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts