Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111535

Role of endogenous prostaglandin E2 in erythropoietin production and dome formation by human renal carcinoma cells in culture.

M Hagiwara, D B McNamara, I L Chen, and J W Fisher

Find articles by Hagiwara, M. in: PubMed | Google Scholar

Find articles by McNamara, D. in: PubMed | Google Scholar

Find articles by Chen, I. in: PubMed | Google Scholar

Find articles by Fisher, J. in: PubMed | Google Scholar

Published October 1, 1984 - More info

Published in Volume 74, Issue 4 on October 1, 1984
J Clin Invest. 1984;74(4):1252–1261. https://doi.org/10.1172/JCI111535.
© 1984 The American Society for Clinical Investigation
Published October 1, 1984 - Version history
View PDF
Abstract

Studies were carried out on the role of endogenous prostaglandin E2 (PGE2) in erythropoietin (Ep) production and dome formation in primary monolayer cultures of a human renal carcinoma from a patient with erythrocytosis that has been serially transplanted into BALB/c athymic nude mice. The metabolism of [14C]arachidonic acid (14C-AA) by cultured renal carcinoma cells, which were plated in 25-cm2 flasks at a density of 2 X 10(4) cells/cm2 and grown for 6, 12 (confluence, 13 X 10(4) cells/cm2), 16, 24, and 30 d in Eagle's minimum essential medium (MEM) supplemented with 10% fetal bovine serum, was examined by using radiometric thin-layer chromatography (TLC). TLC revealed PGE2 to be the major metabolite of 14C-AA produced by the cultured cells throughout the 30 d of cultivation. In addition, the cultured cells at each time period were incubated for 24 h in 5 ml of serum-free Eagle's MEM and the levels of PGE2 and Ep in the incubated media were measured via radioimmunoassay. PGE2 levels in the serum-free media incubated with the cultured cells grown for 6 d were significantly (P less than 0.001) elevated (174 +/- 2.5 pg/ml, n = 5), compared with the unincubated control media (1.5 +/- 0.19 pg/ml, n = 5) and gradually decreased at each time period to 97.6 +/- 4.4 pg/ml (n = 5) at 30 d. On the other hand, the levels of Ep in the incubated media of the cells grown for 6 d were 11.5 +/- 0.52 mU/ml (n = 5) compared with 7.6 +/- 0.62 mU/ml (n = 5) in the control media. However, after the cultured cells became confluent, the levels of Ep in the incubated media showed a marked increase to 222.9 +/- 5.26 mU/ml (n = 5) at 30 d of cultivation. Multicellular hemicysts (domes) developed after the cultured cells reached confluence and their numbers increased with increasing time in confluence in parallel with the increase in Ep. Meclofenamate (MF) (3 X 10(-6)-3 X 10(-5) M), a prostaglandin synthesis inhibitor, produced a significant dose-related decrease in PGE2, Ep, and dome formation without producing a significant effect on cell viability in the 30-d cells. This inhibitory effect of MF on Ep production and dome formation was completely abolished by the addition of 10(-8) M PGE2 to the incubation medium. In conclusion, endogenous PGE2 plays an important role in supporting and/or stimulating Ep production and dome formation in cultured renal carcinoma cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1252
page 1252
icon of scanned page 1253
page 1253
icon of scanned page 1254
page 1254
icon of scanned page 1255
page 1255
icon of scanned page 1256
page 1256
icon of scanned page 1257
page 1257
icon of scanned page 1258
page 1258
icon of scanned page 1259
page 1259
icon of scanned page 1260
page 1260
icon of scanned page 1261
page 1261
Version history
  • Version 1 (October 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts