Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111448

Vitamin D deficiency and renal calcium transport in the rat.

M Yamamoto, Y Kawanobe, H Takahashi, E Shimazawa, S Kimura, and E Ogata

Find articles by Yamamoto, M. in: JCI | PubMed | Google Scholar

Find articles by Kawanobe, Y. in: JCI | PubMed | Google Scholar

Find articles by Takahashi, H. in: JCI | PubMed | Google Scholar

Find articles by Shimazawa, E. in: JCI | PubMed | Google Scholar

Find articles by Kimura, S. in: JCI | PubMed | Google Scholar

Find articles by Ogata, E. in: JCI | PubMed | Google Scholar

Published August 1, 1984 - More info

Published in Volume 74, Issue 2 on August 1, 1984
J Clin Invest. 1984;74(2):507–513. https://doi.org/10.1172/JCI111448.
© 1984 The American Society for Clinical Investigation
Published August 1, 1984 - Version history
View PDF
Abstract

To examine the role of vitamin D in the renal tubular handling of calcium, clearance studies were performed in three groups of rats: group A rats fed a standard vitamin D-deficient diet (Ca 0.45%, P 0.3%) for 6 wk, were hypocalcemic with secondary hyperparathyroidism; group B rats fed the same diet as in group A but with high calcium (Ca 1.4%) and 20% lactose, were normocalcemic and without secondary hyperparathyroidism; group C rats fed the same diet as in group A but supplemented with 25 U of vitamin D3 orally twice a week, were normocalcemic, vitamin D-replete, and euparathyroid. After thyroparathyroidectomy (TPTX), each rat was infused intravenously with an electrolyte solution that contained a fixed concentration of calcium (0-30 mM) with or without parathyroid hormone (PTH; 0.75 or 2.5 U/h) at a rate of 3 ml/h. Urinary calcium excretion and serum calcium concentrations were measured between 16 and 19 h of the infusion, and the apparent threshold of calcium excretion was determined. The threshold of calcium excretion was lower in vitamin D-deficient TPTX rats (groups A and B) than in vitamin D-replete TPTX rats (group C), and not different between group A and group B. Administration of PTH at a dose of 0.75 U/h increased the threshold of calcium excretion by approximately 0.6 mM in group C, but did not alter the threshold either in group A or group B. Administration of a higher dose of PTH (2.5 U/h) raised the threshold similarly in both group A and group B to the extent comparable with that in group C, when it was given 0.75 U/h of PTH. These results demonstrate that the renal threshold of calcium excretion is decreased in the vitamin D-deficient rats independent of the secondary hyperparathyroidism, and that the higher dose of PTH was necessary to raise the calcium threshold in vitamin D-deficient rats. Thus, present study indicates the presence of dual effects of vitamin D on renal tubular handling of calcium; the one is to facilitate renal calcium reabsorption and the other is to enhance the responsiveness of the tubule to PTH.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 507
page 507
icon of scanned page 508
page 508
icon of scanned page 509
page 509
icon of scanned page 510
page 510
icon of scanned page 511
page 511
icon of scanned page 512
page 512
icon of scanned page 513
page 513
Version history
  • Version 1 (August 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts