Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111394

An experimental model of postnatal jaundice in the suckling rat. Suppression of induced hyperbilirubinemia by Sn-protoporphyrin.

G S Drummond and A Kappas

Find articles by Drummond, G. in: JCI | PubMed | Google Scholar

Find articles by Kappas, A. in: JCI | PubMed | Google Scholar

Published July 1, 1984 - More info

Published in Volume 74, Issue 1 on July 1, 1984
J Clin Invest. 1984;74(1):142–149. https://doi.org/10.1172/JCI111394.
© 1984 The American Society for Clinical Investigation
Published July 1, 1984 - Version history
View PDF
Abstract

A model of experimental postnatal hyperbilirubinemia in the rat has been developed utilizing the heme precursor delta-aminolevulinic acid (ALA) to produce jaundice during a selective time period after birth. This time period is defined as that between 7 d postnatally, when the initial postpartum alterations of serum bilirubin and heme metabolism in the neonate have subsided, and 21 d, when the hepatic conjugation mechanism for the bile pigment appears fully developed. Administration of ALA in this time period led to a rapid, consistent, and significant dose-dependent increase in serum bilirubin levels in the newborn animals. Heme administration produced a qualitatively similar but enhanced effect. Both compounds, in addition, induced a dose-dependent increase in hepatic heme oxygenase activity concomitant with the increase in serum bilirubin levels. Neither compound increased serum bilirubin levels significantly when administered at or after 21 d postnatally. Administration of the synthetic metalloporphyrin, Sn-protoporphyrin, to ALA-treated neonates resulted in a dose-dependent decrease in serum bilirubin levels and hepatic heme oxygenase activity. Mn- and Zn-protoporphyrin in comparable doses did not significantly inhibit ALA-induced hyperbilirubinemia. Sn-protoporphyrin also inhibited the hyperbilirubinemia produced by heme in the suckling animals. ALA administration to newborn rats during the specific postnatal period described provides a simple and convenient model of experimental jaundice in the developing neonate which permits an examination of the potential ability of synthetic metalloporphyrins or other compounds to suppress induced hyperbilirubinemia in the newborn animal. The ability to induce a consistent and significant degree of jaundice in the postnatal rat by the method described may also be useful for other types of studies concerned with the biological disposition and effects of endogenously formed bilirubin in the neonate. The results of this study confirm in another model system the potent ability of Sn-protoporphyrin to suppress jaundice in the neonate, and suggest that suppression of heme oxidation by synthetic heme analogues may represent a useful therapeutic approach to the problem of severe hyperbilirubinemia in human premature newborn.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 142
page 142
icon of scanned page 143
page 143
icon of scanned page 144
page 144
icon of scanned page 145
page 145
icon of scanned page 146
page 146
icon of scanned page 147
page 147
icon of scanned page 148
page 148
icon of scanned page 149
page 149
Version history
  • Version 1 (July 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts