Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111379

Functional and phenotypic comparison of human T cell leukemia/lymphoma virus positive adult T cell leukemia with human T cell leukemia/lymphoma virus negative Sézary leukemia, and their distinction using anti-Tac. Monoclonal antibody identifying the human receptor for T cell growth factor.

T A Waldmann, W C Greene, P S Sarin, C Saxinger, D W Blayney, W A Blattner, C K Goldman, K Bongiovanni, S Sharrow, and J M Depper

Find articles by Waldmann, T. in: PubMed | Google Scholar

Find articles by Greene, W. in: PubMed | Google Scholar

Find articles by Sarin, P. in: PubMed | Google Scholar

Find articles by Saxinger, C. in: PubMed | Google Scholar

Find articles by Blayney, D. in: PubMed | Google Scholar

Find articles by Blattner, W. in: PubMed | Google Scholar

Find articles by Goldman, C. in: PubMed | Google Scholar

Find articles by Bongiovanni, K. in: PubMed | Google Scholar

Find articles by Sharrow, S. in: PubMed | Google Scholar

Find articles by Depper, J. in: PubMed | Google Scholar

Published June 1, 1984 - More info

Published in Volume 73, Issue 6 on June 1, 1984
J Clin Invest. 1984;73(6):1711–1718. https://doi.org/10.1172/JCI111379.
© 1984 The American Society for Clinical Investigation
Published June 1, 1984 - Version history
View PDF
Abstract

Adult T cell leukemia (ATL) and Sézary leukemia are malignant proliferations of T lymphocytes that share similar cell morphology and clinical features. ATL is associated with HTLV (human T cell leukemia/lymphoma virus), a unique human type C retrovirus, whereas most patients with the Sézary syndrome do not have antibodies to this virus. Leukemic cells of both groups were of the T3, T4-positive, T8-negative phenotype. Despite the similar phenotype, HTLV-negative Sézary leukemic cells frequently functioned as helper cells, whereas some HTLV-positive ATL and HTLV-positive Sézary cells appeared to function as suppressors of immunoglobulin synthesis. One can distinguish the HTLV-positive from the HTLV-negative leukemias using a monoclonal antibody (anti-Tac) that appears to identify the human receptor for T cell growth factor (TCGF). Resting normal T cells and most HTLV-negative Sézary cells were Tac-negative, whereas all ATL cell populations were Tac-positive. The observation that ATL cells manifest TCGF receptors suggests the possibility that an abnormality of the TCGF-TCGF receptor system may partially explain the uncontrolled growth of these cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1711
page 1711
icon of scanned page 1712
page 1712
icon of scanned page 1713
page 1713
icon of scanned page 1714
page 1714
icon of scanned page 1715
page 1715
icon of scanned page 1716
page 1716
icon of scanned page 1717
page 1717
icon of scanned page 1718
page 1718
Version history
  • Version 1 (June 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts