Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111372

Interactions of lysyl-bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule.

V L Schuster, J P Kokko, and H R Jacobson

Find articles by Schuster, V. in: PubMed | Google Scholar

Find articles by Kokko, J. in: PubMed | Google Scholar

Find articles by Jacobson, H. in: PubMed | Google Scholar

Published June 1, 1984 - More info

Published in Volume 73, Issue 6 on June 1, 1984
J Clin Invest. 1984;73(6):1659–1667. https://doi.org/10.1172/JCI111372.
© 1984 The American Society for Clinical Investigation
Published June 1, 1984 - Version history
View PDF
Abstract

Although intrarenal infusions of kinins produce diuresis, it is not clear to what extent this response is due to hemodynamically mediated medullary washout and/or to direct epithelial effects of kinins. Recent evidence has shown that bradykinin binds to collecting tubules in vitro. We therefore examined the interactions of lysyl-bradykinin and antidiuretic hormone (ADH) with respect to hydraulic conductivity (Lp) in the rabbit cortical collecting tubule perfused in vitro. To ensure adequate substrate for prostaglandin synthesis, the bath contained 2.5 microM arachidonic acid. Arachidonic acid produced no change in base-line Lp and had no effect on the subsequent response to a supramaximal dose of ADH (100 microU/ml). Therefore, all subsequent experiments were done in the presence of arachidonic acid. Lysyl-bradykinin (10(-9)M) added to either the lumen or bath had no effect on base-line Lp. Collecting tubules which were exposed for 1 h to bath lysyl-bradykinin (10(-9)M) had a significantly diminished subsequent Lp in response to ADH (P less than 0.02). In tubules exposed to bath lysyl-bradykinin plus indomethacin (5 microM), the subsequent ADH response was normal. Lysyl-bradykinin (10(-9)M) added to the lumen had no effect on subsequent ADH response. We conclude that lysyl-bradykinin from the basolateral side inhibits the hydroosmotic response of the cortical collecting tubule to ADH, and that this inhibition is probably prostaglandin-mediated. Lysyl-bradykinin does not affect water flow from the luminal surface. These data indicate that the diuresis seen with kinin infusions may result, at least in part, from a direct epithelial effect. They also suggest a role of the renal kallikrein-kinin system in modulating water transport in vivo.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1659
page 1659
icon of scanned page 1660
page 1660
icon of scanned page 1661
page 1661
icon of scanned page 1662
page 1662
icon of scanned page 1663
page 1663
icon of scanned page 1664
page 1664
icon of scanned page 1665
page 1665
icon of scanned page 1666
page 1666
icon of scanned page 1667
page 1667
Version history
  • Version 1 (June 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts