Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion.
M Filicori, J P Butler, W F Crowley Jr
M Filicori, J P Butler, W F Crowley Jr
View: Text | PDF
Research Article

Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion.

  • Text
  • PDF
Abstract

The pattern of episodic gonadotropin release was studied in 15 normal female volunteers during the luteal phase of the menstrual cycle with 24 h of blood sampling for follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels at 10-min intervals. Six subjects (two in the early, two in the mid-, and two in the late luteal phase) also had each of these specimens processed for progesterone levels. A progressive slowing of LH pulsations was present across the luteal phase with the mean LH pulse frequency declining from 15.2 pulses/24 h in the early to 8.4/24 h in the late luteal phase. A trend towards reduction in the amplitude of LH pulses was also observed (12.3 +/- 2.2 SD mIU/ml in the early vs. 8.6 +/- 3.4 mIU/ml in the late luteal phase; NS). In addition, LH pulses of heterogeneous amplitude were identified during the same 24-h study. The mean +/- SD of the larger and of the smaller LH pulses was 16.9 +/- 4.7 and 2.3 +/- 1.0 mIU/ml, respectively (P less than 0.001). While the slowing of the frequency of all LH pulses correlated well (r = 0.80, P less than 0.001) with the day of the luteal phase and poorly with the actual plasma progesterone levels, the incidence of the small LH pulses was highest in the mid-luteal phase and correlated well with the mean progesterone plasma levels (r = 0.63, P less than 0.01). In the early luteal phase, the pattern of progesterone secretion was stable over the 24-h studies and showed no relationship to episodic LH release. In contrast, in the mid- and late luteal phase, plasma progesterone concentrations rapidly fluctuated during the 24-h studies from levels as low as 2.3 to peaks of 40.1 ng/ml, often within the course of minutes. Progesterone increments closely attended episodes of LH release, as documented by the significant (P less than 0.05) cross-correlation between LH and progesterone levels, at time lags of 25-55 min. The results of this study indicate that in the human luteal phase: (a) the frequency of pulsatile release of LH declines progressively and correlates well with the duration of exposure to progressively and correlates well with the duration of exposure to progesterone; (b) the amplitude of LH pulses varies with the appearance of an increased percentage of smaller pulses correlating well with the acute level of progesterone; (c) in the early luteal phase, the pattern of progesterone secretion is stable; (d) in the mid- and late luteal phase, progesterone secretion is episodic, and correlates with LH pulsatile release; and (e) single progesterone estimations in the mid- and late luteal phase do not accurately reflect corpus luteum adequacy.

Authors

M Filicori, J P Butler, W F Crowley Jr

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 981 230
PDF 126 74
Scanned page 625 19
Citation downloads 111 0
Totals 1,843 323
Total Views 2,166
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts