Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111357

Interaction of primate alveolar macrophages and Legionella pneumophila.

R F Jacobs, R M Locksley, C B Wilson, J E Haas, and S J Klebanoff

Find articles by Jacobs, R. in: PubMed | Google Scholar

Find articles by Locksley, R. in: PubMed | Google Scholar

Find articles by Wilson, C. in: PubMed | Google Scholar

Find articles by Haas, J. in: PubMed | Google Scholar

Find articles by Klebanoff, S. in: PubMed | Google Scholar

Published June 1, 1984 - More info

Published in Volume 73, Issue 6 on June 1, 1984
J Clin Invest. 1984;73(6):1515–1523. https://doi.org/10.1172/JCI111357.
© 1984 The American Society for Clinical Investigation
Published June 1, 1984 - Version history
View PDF
Abstract

We studied the interaction between Legionella pneumophila, which is principally a pulmonary pathogen, with primate alveolar macrophages (AM), which are the primary pulmonary cellular defense mechanism. For these studies we used L. pneumophila, type I, which were grown in albumin-yeast extract broth, were greater than 80% viable, and were comparable in virulence for guinea pigs to organisms from guinea pig spleen homogenates. For comparison, avirulent agar-passed L. pneumophila, type I, and a strain of Escherichia coli were also used. In the absence of detectable antibody, AM phagocytosed similar numbers of virulent and avirulent Legionella and killed the majority of ingested Legionella in 15-30 min, as determined by two different assays. The virulent and avirulent Legionella appeared to be equally susceptible to the cidal systems of the AM and both were killed more readily than were E. coli under both assay conditions. Phagocytosis of Legionella by AM was associated with a localized respiratory burst, as indicated by nitroblue tetrazolium reduction around ingested organisms. Killing of AM-associated Legionella was inhibited by the hydroxyl radical (OH.) scavenger mannitol (but not by an equiosmolar concentration of sodium sulfate), and by a combination of superoxide dismutase and catalase (but not by either enzyme alone). These findings suggest a contribution by OH., one generated by the metal-catalyzed interaction of superoxide and hydrogen peroxide (Haber-Weiss reaction) in the anti-Legionella activity of AM. The virulent Legionella that survived intracellularly increased in number from 4 X 10(4) at 1 h to 6 X 10(6) at 96 h after infection. In contrast, avirulent Legionella replicated more slowly, increasing in number from 4 X 10(4) to 1 X 10(5) over the same period. Replication of virulent Legionella destroyed the AM monolayers by 120 h, whereas monolayers containing avirulent organisms remained intact. Thus, virulence of Legionella appears not to correlate with its ability to survive early killing by AM, but rather with the ability of the small fraction of surviving organisms to replicate within these cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1515
page 1515
icon of scanned page 1516
page 1516
icon of scanned page 1517
page 1517
icon of scanned page 1518
page 1518
icon of scanned page 1519
page 1519
icon of scanned page 1520
page 1520
icon of scanned page 1521
page 1521
icon of scanned page 1522
page 1522
icon of scanned page 1523
page 1523
Version history
  • Version 1 (June 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts