Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111253

Effect of beta and alpha adrenergic blockade on glucose-induced thermogenesis in man.

R A DeFronzo, D Thorin, J P Felber, D C Simonson, D Thiebaud, E Jequier, and A Golay

Find articles by DeFronzo, R. in: PubMed | Google Scholar

Find articles by Thorin, D. in: PubMed | Google Scholar

Find articles by Felber, J. in: PubMed | Google Scholar

Find articles by Simonson, D. in: PubMed | Google Scholar

Find articles by Thiebaud, D. in: PubMed | Google Scholar

Find articles by Jequier, E. in: PubMed | Google Scholar

Find articles by Golay, A. in: PubMed | Google Scholar

Published March 1, 1984 - More info

Published in Volume 73, Issue 3 on March 1, 1984
J Clin Invest. 1984;73(3):633–639. https://doi.org/10.1172/JCI111253.
© 1984 The American Society for Clinical Investigation
Published March 1, 1984 - Version history
View PDF
Abstract

After intravenous glucose/insulin infusion there is an increase in oxygen consumption and energy expenditure that has been referred to as thermogenesis. To examine the contribution of the beta and alpha adrenergic nervous system to this thermogenic response, 12 healthy volunteers participated in three studies: (a) euglycemic insulin (plasma insulin approximately 100 microunits/ml) clamp study (n = 12); (b) insulin clamp study after beta adrenergic blockade with intravenous propranolol for 1 h (n = 12); (c) insulin clamp study after alpha adrenergic blockade with phentolamine for 1 h (n = 5). During the control insulin clamp study total glucose uptake, glucose oxidation and nonoxidative glucose uptake averaged 7.85 +/- 0.47, 2.62 +/- 0.22, and 5.23 +/- 0.51 mg/kg X min. After propranolol infusion, insulin-mediated glucose uptake was significantly reduced, 6.89 +/- 0.41 (P less than 0.02). This decrease was primarily the result of a decrease in glucose oxidation (1.97 +/- 0.19 mg/kg X min, P less than 0.01) without any change in nonoxidative glucose metabolism. Phentolamine administration had no effect on total glucose uptake, glucose oxidation, or nonoxidative glucose disposal. The increments in energy expenditure (0.10 +/- 0.01 vs. 0.03 +/- 0.01 kcal/min) and glucose/insulin-induced thermogenesis (4.9 +/- 0.5 vs. 1.5 +/- 0.5%) were reduced by 70% during the propranolol/insulin clamp study. The increments in energy expenditure (0.12 +/- 0.03 kcal/min) and thermogenesis (5.0 +/- 1.5%) were not affected by phentolamine. These results indicate that activation of the beta adrenergic receptor plays an important role in the insulin/glucose-mediated increase in energy expenditure and thermogenesis. In contrast, the alpha adrenergic receptor does not appear to participate in this response.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 633
page 633
icon of scanned page 634
page 634
icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
Version history
  • Version 1 (March 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts