Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111242

Inhibition of platelet-aggregating activity in thrombotic thrombocytopenic purpura plasma by normal adult immunoglobulin G.

E C Lian, P T Mui, F A Siddiqui, A Y Chiu, and L L Chiu

Find articles by Lian, E. in: JCI | PubMed | Google Scholar

Find articles by Mui, P. in: JCI | PubMed | Google Scholar

Find articles by Siddiqui, F. in: JCI | PubMed | Google Scholar

Find articles by Chiu, A. in: JCI | PubMed | Google Scholar

Find articles by Chiu, L. in: JCI | PubMed | Google Scholar

Published February 1, 1984 - More info

Published in Volume 73, Issue 2 on February 1, 1984
J Clin Invest. 1984;73(2):548–555. https://doi.org/10.1172/JCI111242.
© 1984 The American Society for Clinical Investigation
Published February 1, 1984 - Version history
View PDF
Abstract

Plasma from patients with thrombotic thrombocytopenic purpura (TTP) caused the aggregation of autologous and homologous platelets, and effect which was inhibited by normal plasma. IgG purified from seven normal adults at a concentration of 0.7 mg/ml completely inhibited the platelet aggregation induced by plasma obtained from two TTP patients with active disease. The inhibition of platelet aggregation by human adult IgG was concentration dependent, and the inhibitory activity of human IgG was neutralized by rabbit antihuman IgG. Fab fragments inhibited the TTP plasma-induced platelet aggregation as well as intact IgG, whereas Fc fragments had no effect. Platelet aggregation caused by ADP, collagen, epinephrine, or thrombin was not affected by purified human IgG. The prior incubation of IgG with TTP plasma caused a significantly greater reduction of platelet aggregation by TTP plasma than that of IgG and platelet suspension, suggesting that the IgG inhibits TTP plasma-induced platelet aggregation through direct interaction with platelet aggregating factor in TTP plasma. IgG obtained initially from five infants and young children under the age of 4 yr did not possess any inhibitory activity. When one of the children reached 3 yr of age, his IgG inhibited the aggregation induced by one TTP plasma, but not that caused by another plasma. The IgG procured from the same boy at 4 yr of age inhibited the aggregation induced by both TTP plasmas. The IgG purified from the TTP plasma during active disease failed to inhibit the aggregation caused by the same plasma. After recovery, however, the IgG effectively inhibited aggregation. These observations suggest that platelet-aggregating factors present in the TTP plasma are heterogeneous in nature and that the IgG present in the normal adult plasma, which inhibits the TTP plasma-induced platelet aggregation, may be partially responsible for the success of plasma infusion therapy in TTP.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 548
page 548
icon of scanned page 549
page 549
icon of scanned page 550
page 550
icon of scanned page 551
page 551
icon of scanned page 552
page 552
icon of scanned page 553
page 553
icon of scanned page 554
page 554
icon of scanned page 555
page 555
Version history
  • Version 1 (February 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts