Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111223

Selective inhibition of acetaminophen oxidation and toxicity by cimetidine and other histamine H2-receptor antagonists in vivo and in vitro in the rat and in man.

M C Mitchell, S Schenker, and K V Speeg Jr

Find articles by Mitchell, M. in: JCI | PubMed | Google Scholar

Find articles by Schenker, S. in: JCI | PubMed | Google Scholar

Find articles by Speeg, K. in: JCI | PubMed | Google Scholar

Published February 1, 1984 - More info

Published in Volume 73, Issue 2 on February 1, 1984
J Clin Invest. 1984;73(2):383–391. https://doi.org/10.1172/JCI111223.
© 1984 The American Society for Clinical Investigation
Published February 1, 1984 - Version history
View PDF
Abstract

Acetaminophen-induced hepatotoxicity results from hepatic enzymatic oxidation of acetaminophen to a toxic, electrophilic intermediate. Acetaminophen is ordinarily eliminated after conjugation with glucuronic acid and sulfate to nontoxic derivatives. Cimetidine has been shown to inhibit the hepatic oxidation of a number of drugs and to protect rats from acetaminophen-induced hepatic necrosis. The aim of this study was to define the mechanism by which cimetidine reduced acetaminophen-induced hepatic necrosis and to determine whether inhibition of formation of the reactive metabolite(s) of acetaminophen occurred also in man. In vivo cimetidine pretreatment decreased covalent binding of [3H]acetaminophen to the liver from 552 +/- 23.8 to 170 +/- 31.6 nmol/g protein 2 h after a toxic dose of acetaminophen in 3-methylcholanthrene pretreated rats (P less than 0.05). Cimetidine pretreatment also significantly reduced the rate of hepatic glutathione depletion. Both cimetidine and metiamide produced dose-dependent inhibition of acetaminophen oxidation in vitro, whereas inhibition by ranitidine and cimetidine sulfoxide was quantitatively less. Inhibition of acetaminophen oxidation by cimetidine and metiamide was primarily competitive with an inhibition constant (Ki) of 130 +/- 16 and 200 +/- 50 microM, respectively. By contrast, cimetidine inhibited acetaminophen glucuronidation minimally with a Ki of 1.39 +/- 0.23 mM. Similar results were obtained using human liver microsomes as a source of enzymes. In a dose-related fashion, cimetidine also reduced acetaminophen-induced toxicity to human lymphocytes when incubated with microsomes and NADPH. Pharmacokinetics of acetaminophen elimination were studied in normal volunteers with and without co-administration of cimetidine 300 mg every 6 h. In normal volunteers, cimetidine decreased the fractional clearance of the oxidized (potentially toxic) metabolites of acetaminophen more than the conjugated metabolites. This finding confirmed the hypothesis that cimetidine is a relatively selective inhibitor of the oxidation of acetaminophen to reactive metabolites in man as well as in animals. When considered together with the results of previous studies showing improved survival and decreased hepatoxicity in acetaminophen-poisoned animals, the present results provide a rational basis for assessing possible benefits of cimetidine treatment of acetaminophen overdoses in man.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 383
page 383
icon of scanned page 384
page 384
icon of scanned page 385
page 385
icon of scanned page 386
page 386
icon of scanned page 387
page 387
icon of scanned page 388
page 388
icon of scanned page 389
page 389
icon of scanned page 390
page 390
icon of scanned page 391
page 391
Version history
  • Version 1 (February 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts