Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111151

Concentrations of prostaglandin endoperoxide synthase and prostaglandin I2 synthase in the endothelium and smooth muscle of bovine aorta.

D L DeWitt, J S Day, W K Sonnenburg, and W L Smith

Find articles by DeWitt, D. in: PubMed | Google Scholar

Find articles by Day, J. in: PubMed | Google Scholar

Find articles by Sonnenburg, W. in: PubMed | Google Scholar

Find articles by Smith, W. in: PubMed | Google Scholar

Published December 1, 1983 - More info

Published in Volume 72, Issue 6 on December 1, 1983
J Clin Invest. 1983;72(6):1882–1888. https://doi.org/10.1172/JCI111151.
© 1983 The American Society for Clinical Investigation
Published December 1, 1983 - Version history
View PDF
Abstract

Platelets adhere to the subendothelial layer of newly deendothelialized arteries. Attachment can be reduced with exogenous prostacyclin (PGI2). Thus, the subendothelium may be unable to produce sufficient PGI2 to prevent platelet adherence and subsequent platelet-platelet interaction. Consistent with this explanation are data from an earlier report (1977. Moncada S., A. G. Herman, E. A. Higgs, and J. R. Vane. Thromb. Res. 11:323-344) indicating that the smooth muscle layer of aorta has only 10-15% of the capacity of endothelial cells to synthesize PGI2. We have measured the concentrations of PGI2 synthase and prostaglandin endoperoxide (PGH) synthase in bovine aorta and obtained results quite different from those described in this earlier report. Tandem immunoradiometric assays for PGI2 synthase and PGH synthase antigens were used to quantitate these proteins in detergent-solubilized homogenates of endothelial cells and smooth muscle tissue prepared from 10 different bovine aorta. The concentrations of PGI2 synthase in endothelial cells and smooth muscle were found to be the same. However, the concentration of PGH synthase in endothelial cells averaged greater than 20 times that of smooth muscle. Results similar to those determined by immunoradiometric assay were also obtained when PGH synthase and PGI2 synthase catalytic activities were measured in preparations of endothelial and smooth muscle cells. Furthermore, when bovine aorta and renal arteries were subjected to immunocytofluorescence staining using monoclonal antibodies to PGI2 synthase, fluorescence staining of equivalent intensity was detected in both the endothelial cells and the smooth muscle. Moreover, the intensity of fluorescence was similar throughout cross-sections of vascular smooth muscle, indicating that there is no gradient in PGI2 synthase concentrations between the endothelium and adventitia. Our results indicate that the propensity of platelets to adhere to the subendothelium of deendothelialized arteries and form aggregates cannot be attributed simply to an inability of the denuded vasculature to produce PGI2 from PGH2, but may be a consequence of the low PGH synthase activity of smooth muscle. Consistent with this concept are the results of Eldor et al. (1981. J. Clin. Invest. 67:735-741) who reported that increases in PGH synthase activity are associated with formation of a nonthrombogenic neointima.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1882
page 1882
icon of scanned page 1883
page 1883
icon of scanned page 1884
page 1884
icon of scanned page 1885
page 1885
icon of scanned page 1886
page 1886
icon of scanned page 1887
page 1887
icon of scanned page 1888
page 1888
Version history
  • Version 1 (December 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts